
1. (10 points) You are an education researcher, and you believe that good students get
more sleep. To test this hypothesis, you survey students at a local high school. In a
sample of 100 honors students, the average number of hours of sleep per night is 7,
with a variance of 0.5. In a sample of 100 non-honors students, the average number of
hours of sleep per night is 6.75, with a variance of 0.5. You hypothesize that honors
students get more hours of sleep per night than non-honors students.

(a) State the null hypothesis, alternative hypothesis, and test statistic. Give the form
of the rejection region.

The parameter of interest is µ1 − µ2, the difference between the means of the
two populations (honors students and non-honors students). The null hypothesis
is µ1 − µ2 = 0, the alternative hypothesis is µ1 − µ2 > 0, and the test statistic
is Ȳ1 − Ȳ2. Since this is an upper-tail test, the rejection region has the form
Ȳ1 − Ȳ2 ≥ k.

(b) At the level of α = 0.05, is there sufficient evidence to support the hypothesis
that honors students get more hours of sleep per night than non-honors students?

Since this is a large sample test, the estimator Ȳ1 − Ȳ2 has an (approximately)
normal distribution, so we can use the Z-test. Since we have an upper tail test,
the value of z we need is zα = z0.05 = 1.65 (you could also use 1.64 or 1.645). The
standard deviation of the estimator is:

σȲ1−Ȳ2 =

√
σ2

1

n1

+
σ2

2

n2

=

√
0.5

100
+

0.5

100
=

√
1

100

=
1

10
= 0.1

(Note that the problem gives us the variance, not the standard deviation.) The
rejection region is therefore:

Ȳ1 − Ȳ2 ≥ 0 + zασȲ1−Ȳ2 = 1.65(0.1)

Ȳ1 − Ȳ2 ≥ 0.165

Since our test statistic Ȳ1− Ȳ2 = 7−6.75 = 0.25 lies inside the rejection region, we
reject the null hypothesis at the level of α = 0.05, thus there is sufficient evidence
to support the hypothesis that honors students get more hours of sleep per night
than non-honors students at this level.

(c) What is the p-value for this test?

The p-value is the smallest value of α for which we will reject the null hypothesis
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given our observation.

p = P(Ȳ1 − Ȳ2 ≥ 0.25|null hypothesis is true)

= P
(
Z ≥ 0.25− 0

0.1

)
= P(Z ≥ 2.50)

= 0.0062

(d) Suppose we have reason to believe that honors students get 0.4 more hours of sleep
per night than non-honors students. Using this as the alternative hypothesis, and
using the same rejection region as found above, what is the value of β for this test?

β = P(test statistic is outside rejection region|alternative hypothesis is true)

= P(Ȳ1 − Ȳ2 < 0.165|µ1 − µ2 = 0.4)

= P
(
Z <

0.165− 0.4

0.1

)
= P(Z < −2.35)

= 0.0094

2



2. (10 points) Suppose we have a population which is described by the probability density
function

f(x) =


2

θ

(
1− x

θ

)
0 ≤ x ≤ θ

0 otherwise

where θ > 0 is an unknown parameter.

(a) Suppose you take n samples X1, . . . , Xn from the population. Let X̄ be the sam-
ple mean. Find the method of moments estimator for θ.

The method of moments estimator is given by setting X̄ = µ, where µ is the
population mean. To find µ, we use the formula for the expected value of a
continuous random variable.

µ =

∫ θ

0

x
2

θ

(
1− x

θ

)
dx

=
2

θ

∫ θ

0

(
x− x2

θ

)
dx

=
2

θ

(
x2

2
− x3

3θ

)∣∣∣θ
0

=
2

θ

(
θ2

2
− θ2

3

)
=

2

θ

θ2

6

=
θ

3

From this we get Ȳ = θ/3, so the method of moments estimator for θ is

θ̂ = 3Ȳ

(b) What is the variance of the method of moments estimator you found in part (a)?

The variance of the estimator from above is:

V ar(θ̂) = V ar(3Ȳ )

= 32V ar(Ȳ )

= 9
σ2

n

where σ2 is the population variance. To find that, we use the Magic Variance
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Formula. Letting X be a sample from the population, we compute

E(X2) =

∫ θ

0

x2 2

θ

(
1− x

θ

)
dx

=
2

θ

∫ θ

0

(
x2 − x3

θ

)
dx

=
2

θ

(
x3

3
− x4

4θ

)∣∣∣θ
0

=
2

θ

(
θ3

3
− θ3

4

)
=

2

θ

θ3

12

=
θ2

6

Since we computed E(X) in part (a), by the Magic Variance Formula,

σ2 = E(X2)− [E(X)]2

=
θ2

6
−
[
θ

3

]2

= θ2

(
1

6
− 1

9

)
=
θ2

18

Substituting this above, we get

V ar(θ̂) =
9

n

θ2

18
=
θ2

2n

(c) Suppose you take a single sample X from the population. Find the maximum
likelihood estimator (MLE) for θ.

To get the likelihood function, we plug our sample X into the density function.
Then we take the maximize by taking the derivative with respect to θ and setting
it equal to 0.

d

dθ
L(X|θ) =

d

dθ

2

θ

(
1− X

θ

)
= 2

d

dθ

(
1

θ
− X

θ2

)
= 2

(
− 1

θ2
+ 2

X

θ3

)
= 2

(
2X − θ
θ3

)
Setting this to 0, this is only true if the numerator is 0. In this case, we have
θ = 2X. Thus the MLE for θ is θ̂MLE = 2X.
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3. (10 points) Suppose we have population whose distribution is a Poisson distribution
with unknown parameter λ. You take a group of n samples X1, . . . , Xn and a group
of m samples Y1, . . . , Ym from the population. All samples are independent. You form
the following estimator for λ:

λ̂ = a
X1 + · · ·+Xn

n
+ b

Y1 + · · ·+ Ym
m

where a and b are constants.

(a) What condition is needed on a and b so that λ̂ is unbiased?

Using linearity of expectation and the expected value of the Poisson distribution,

E(λ̂) =
a

n
E(X1 + · · ·+Xn) +

b

m
E(Y1 + · · ·+ Ym)

=
a

n

n∑
i=1

E(Xi) +
b

m

m∑
j=1

E(Yj)

=
a

n

n∑
i=1

λ+
b

m

m∑
j=1

λ

=
a

n
nλ+

b

m
mλ

= (a+ b)λ

This is only equal to the population mean λ if a + b = 1, which is the condition
for the estimator to be unbiased.

(b) What is the mean squared error (MSE) for λ̂? Do not assume that a and b satisfy
the condition you found in part (a), i.e. do not assume the estimator λ̂ is unbiased.

Recall that MSE is the sum of the bias squared and the variance.

Bias(λ̂) = E(λ̂)− λ
= (a+ b)λ− λ = (a+ b− 1)λ

For the variance, we use the fact that the samples are independent and the variance
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of the Poisson distribution.

V ar(λ̂) =
a2

n2
V ar(X1 + · · ·+Xn) +

b2

m2
V ar(Y1 + · · ·+ Ym)

=
a2

n2

n∑
i=1

V ar(Xi) +
b2

m2

m∑
j=1

V ar(Yj)

=
a2

n2

n∑
i=1

λ+
b2

m2

m∑
j=1

λ

=
a2

n2
nλ+

b2

m2
mλ

=

(
a2

n
+
b2

m

)
λ

Alternatively, we can write the estimator as λ̂ = aX̄ + bȲ , and use what we
learned in class about the variances of X̄ and Ȳ .

The MSE is then given by:

MSE(λ̂) = [Bias(λ̂)]2 + V ar(λ̂)

= (a+ b− 1)2λ2 +

(
a2

n
+
b2

m

)
λ
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4. (10 points) A bag contains w white marbles and r red marbles. You draw a sample of
n marbles from the bag without replacement, where n ≤ w + r.

(a) What is the probability that your sample contains exactly y red marbles, where
0 ≤ y ≤ r?

If we draw exactly y red marbles, we must draw n − y marbles, so using combi-
natorics, the probability is (

r
y

)(
w
n−y

)(
r+w
n

)
(b) Suppose one of the red marbles in the bag is labeled with the number 1. What

is the probability that your sample contains the red marble which is labeled with
the number 1?

There are many ways to do this. The probability of the first marble being the Red
1 is 1/(r+w). Since order does not matter (so the marbles are exchangeable), the
probability of any of the n marbles being the Red 1 must be the same thing, i.e.
1/(r + w). Since the n events “The ith ball is the Red 1” are disjoint (mutually
exclusive), the probability that we get the Red 1 in our sample is:

n∑
i=1

P(the ith ball is the Red 1) =
n∑
i=1

1

r + w
=

n

r + w

You can also use a combinatorics approach to get the probability. There are n
balls chosen; if you get the Red 1, one of these the Red 1, and the other n− 1 of
these are chosen from the r + w − 1 balls which are not the Red 1.

(
1
1

)(
r+w−1
n−1

)(
r+w
n

) =

(r + w − 1)!

(n− 1)![(r + w − 1)− (n− 1)]!

(r + w)!

n!(r + w − n)!

=

(r + w − 1)!

(n− 1)!(r + w − n)!

(r + w)!

n!(r + w − n)!

=
(r + w − 1)!n!

(r + w)!(n− 1)!

=
(r + w − 1)!n(n− 1)!

(r + 1)(r + w − 1)!(n− 1)!

=
n

r + w

(c) What is the expected number of red marbles in your sample?

7



There are again many ways to do this. We will use linearity of expectation together
with part (b). This time, label the r red balls 1, 2, . . . , r. Define the indicator
random variables Ri by

Ri =

{
1 red ball i is in your sample

0 red ball i is not in your sample

Let R be the number of red balls in your sample. Then R =
∑r

i=1Ri. By linearity
of expectation,

E(R) =
r∑
i=1

E(Ri)

For each indicator random variable,

E(Ri) = 0 · P(Ri = 0) + 1 · P(Ri = 1)

= P(Ri = 1)

= P(red ball i is in your sample)

=
n

r + w

where the last line is from part (b), since the probability is the same for any red
ball i as it is for red ball 1 by symmetry. Thus we have:

E(R) =
r∑
i=1

E(Ri)

=
r∑
i=1

n

r + w

= r

(
n

r + w

)
= n

(
r

r + w

)
Note that this expected value is the same as that of a binomial random variable
with parameter p = r/(r + w), thus the expected number of red balls in the
sample is the same whether we sample without replacement (hypergeometric) or
with replacement (binomial).

8



5. (10 points) Consider the following timetable for the train from Zurich to Geneva,
Switzerland. Only times between 8:00 and 9:00 are shown.

8:00 8:30 9:00

Since these are Swiss trains, they are always exactly on time! Suppose you arrive at
the Zurich train station uniformly at random between 8:20 and 9:00 and wait for the
train to Geneva.

(a) What is the probability density function for the amount of time you spend waiting
for the train? Be sure to give appropriate bounds on the density function. You
may describe the density function any way you wish, as long as the values and
bounds of the density function are clear.

There are a bunch of ways to do this. Here is one of them. If you arrive between
8:20 and 8:30, you wait for the 8:30 train, so the amount of time you wait is
Uniform(0, 10). If you arrive between 8:30 and 9:00, you wait for the 9:00 train,
so the amount of time you wait is Uniform(0, 30). The probability that you arrive
8:20 and 8:30 is 1/4, and the probability that you arrive between 8:30 and 9:00 is
3/4, since your arrival time is uniformly distributed over a 40-minute interval of
time. Thus the density for your waiting time is:

1

4
Uniform(0, 10) +

3

4
Uniform(0, 30)

At this point, it might be easiest to draw pictures of the two uniform densities,
scale them appropriately, and add them together. You can then express the
density as a graph, which is totally fine. More “mathematically” the Uniform(0,
10) density is:

f(x) =

{
1
10

0 ≤ x ≤ 10

0 otherwise

The Uniform(0, 30) density is:

g(x) =

{
1
30

0 ≤ x ≤ 30

0 otherwise
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Then the density for the waiting time is:

1

4
f(x) +

3

4
g(x) =

1

4

{
1
10

0 ≤ x ≤ 10

0 otherwise
+

3

4

{
1
30

0 ≤ x ≤ 30

0 otherwise

=

{
1
40

0 ≤ x ≤ 10

0 otherwise
+

{
1
40

0 ≤ x ≤ 30

0 otherwise

=


1
40

+ 1
40

0 ≤ x < 10
1
40

10 ≤ x ≤ 30

0 otherwise

=


1
20

0 ≤ x < 10
1
40

10 ≤ x ≤ 30

0 otherwise

(b) What is the expected amount of time you spend waiting for the train?

For this, you can multiply the density from part (a) by x and integrate from 0 to
30. Alternatively, letting X be the waiting time for the next train, by linearity of
expectation and using the mean of the uniform distribution:

E(X) = E
(

1

4
Uniform(0, 10) +

3

4
Uniform(0, 30)

)
=

1

4
E(Uniform(0, 10)) +

3

4
E(Uniform(0, 30))

=
1

4
(5) +

3

4
(15)

=
5

4
+

45

4

=
50

4

=
25

2
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