
APMA 1650 – Homework 9

1. The reading on a voltmeter is uniformly distributed over the interval [θ, θ+1], where θ
is the true voltage of the circuit. Using your voltmeter, you take n consecutive voltage
readings Y1, . . . , Yn from a single circuit.

(a) Show that the sample mean Ȳ is a biased estimator for θ, and compute the bias
of Ȳ .

First we find the expected value of Ȳ . We know from class that E(Ȳ = µ,
where µ is the population mean. Since the population has a uniform distribution,
µ = (θ + (θ + 1))/2 = θ + 1/2. Since this is not θ, our estimator is biased. The
bias is (θ + 1/2)− θ = 1/2.

(b) Find a function of Ȳ which is an unbiased estimator of θ.

To turn the expected value of Ȳ into θ, all we have to do is subtract 1/2. Thus
Ȳ − 1/2 is an unbiased esimator for θ.

(c) Find the MSE of Ȳ (the biased estimator) when Ȳ is used as an estimator of θ.

We have found the bias of Ȳ so we only have to compute its variance. We know
that V ar(Ȳ ) = σ2/n, where σ2 is the population variance. Since this is a uniform
distribution,

σ2 =
((θ + 1)− θ)2

12
=

1

12

Thus the MSE is (1/2)2 + 1/12n = 1/4 + 1/12n.

2. Let X ∼ Binom (n, p)

Consider the following estimator for p:

p̂1 =
X + 1

n+ 2

The bias of p̂1 =
1−2p
n+2

The mean square error (MSE) of p̂1 is (1−2p)2+np(1−p)
(n+2)2

.

The standard, unbiased estimator for p is

p̂ =
X

n

If the biased estimator ever has a lower MSE, it will likely be either on the extremes
(p = 0, p = 1) or in the middle (p = 1/2). The p = 1/2 case looks promising, since in
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that case the bias is actually 0. The standard estimator p̂ is unbiased, so its MSE is
equal to its variance. Taking p = 1/2, we have:

MSE(p̂) = V ar

(
X

n

)
=

np(1− p)

n2
=

1

4

n

n2

For the biased estimator, taking p = 1/2, we have:

MSE(p̂1) =
np(1− p)

(n+ 2)2
=

1

4

n

(n+ 2)2

This is smaller than the MSE of the standard estimator p̂.

3. Let Y1, Y2, . . . , Yn be a random sample from a population with probability density
function parameterized by θ given by

fθ(y) =

{
θyθ−1 0 < y < 1

0 otherwise

where θ > 0 is the parameter of interest.

(a) Show that the sample mean Ȳ is an unbiased estimator for θ
θ+1

.

Since the expected value of Ȳ is the population mean µ, first we find µ.

µ =

∫ 1

0

yθyθ−1dy

=

∫ 1

0

θyθdy

= θ
yθ+1

θ + 1

∣∣∣0
1

=
θ

θ + 1

(b) Show that the sample mean Ȳ is a consistent estimator for θ
θ+1

.

Since the estimator is unbiased, for consistency all we have to do is show that its
variance goes to 0 as n goes to infinity. We use the Magic Variance Formula to
find the population variance. Let Y be a sample from the population. Then

E(Y 2) =

∫ 1

0

y2θyθ−1dy

=

∫ 1

0

θyθ+1dy

= θ
yθ+2

θ + 2

∣∣∣1
0

=
θ

θ + 2
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By the Magic Variance Formula, for the population variance we have

σ2 = E(Y 2)− [E(Y )]2

=
θ

θ + 2
−
[

θ

θ + 1

]2
To get the variance of the sample mean, we divide this by n. This gives us:

V ar(Ȳ ) =
1

n

(
θ

θ + 2
−
[

θ

θ + 1

]2)
Since everything inside the parentheses is constant, this goes to 0 as n goes to
infinity. It is enough to note that since the population variance is finite, the
sample variance must go to 0 as n goes to infinity.

4. Let Y1, Y2, . . . , Yn be a random sample from a population with probability density
function parameterized by θ given by

fθ(y) =

{
(θ + 1)yθ 0 < y < 1

0 otherwise

where θ > −1 is the parameter of interest.

(a) Find an estimator for θ using the method of moments.

In the method of moments, we set the population mean µ = Ȳ and solve for θ.

µ =

∫ 1

0

y(θ + 1)yθdy

=

∫ 1

0

(θ + 1)yθ+1dy

= (θ + 1)
yθ+2

θ + 2

∣∣∣1
0

=
θ + 1

θ + 2

Now we set µ = Ȳ and solve for θ.

θ + 1

θ + 2
= Ȳ

θ + 1 = Ȳ (θ + 2) = Ȳ θ + 2Ȳ

θ(1− Ȳ ) = 2Ȳ − 1

θ =
2Ȳ − 1

1− Ȳ

Thus the method of moments estimator is:

θ̂ =
2Ȳ − 1

1− Ȳ
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(b) Find the maximum likelihood estimator (MLE) for θ. Compare this to your an-
swer from (a).

First we find the likelihood function. For this density function, we have:

L(Y1, . . . , Yn|θ) = (θ + 1)Y θ
1 · · · (θ + 1)Y θ

n

= (θ + 1)n(Y1 · · ·Yn)
θ

We want to find the value of θ which maximizes this. To do so, we can take the
derivative with respect to θ and set it equal to 0. Since we have a product of
things involving θ, it is easier to take the log to turn the product into a sum and
to then maximize the log likelihood function. This is the same thing we did for
the geometric distribution. First we find the log likelihood function.

logL(Y1, . . . , Yn|θ) = log
[
(θ + 1)n(Y1 · · ·Yn)

θ
]

= n log(θ + 1) + θ log(Y1 · · ·Yn)

= n log(θ + 1) + θ
n∑

i=1

log(Yi)

To find the value of θ which maximizes this, we take the derivative with respect
to θ and set it equal to 0.

d

dθ
logL(Y1, . . . , Yn|θ) =

d

dθ

[
n log(θ + 1) + θ

n∑
i=1

log(Yi)

]

=
n

θ + 1
+

n∑
i=1

log(Yi)

Setting this equal to 0:

n

θ + 1
= −

n∑
i=1

log(Yi)

θ + 1 = − n∑n
i=1 log(Yi)

θ = −1− n∑n
i=1 log(Yi)
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