APMA 1650 – Homework 9

- 1. The reading on a voltmeter is uniformly distributed over the interval $[\theta, \theta + 1]$, where θ is the true voltage of the circuit. Using your voltmeter, you take *n* consecutive voltage readings Y_1, \ldots, Y_n from a single circuit.
 - (a) Show that the sample mean \bar{Y} is a biased estimator for θ , and compute the bias of \bar{Y} .

First we find the expected value of \bar{Y} . We know from class that $\mathbb{E}(\bar{Y} = \mu)$, where μ is the population mean. Since the population has a uniform distribution, $\mu = (\theta + (\theta + 1))/2 = \theta + 1/2$. Since this is not θ , our estimator is biased. The bias is $(\theta + 1/2) - \theta = 1/2$.

(b) Find a function of \overline{Y} which is an unbiased estimator of θ .

To turn the expected value of \bar{Y} into θ , all we have to do is subtract 1/2. Thus $\bar{Y} - 1/2$ is an unbiased esimator for θ .

(c) Find the MSE of \overline{Y} (the biased estimator) when \overline{Y} is used as an estimator of θ .

We have found the bias of \overline{Y} so we only have to compute its variance. We know that $Var(\overline{Y}) = \sigma^2/n$, where σ^2 is the population variance. Since this is a uniform distribution,

$$\sigma^2 = \frac{((\theta+1)-\theta)^2}{12} = \frac{1}{12}$$

Thus the MSE is $(1/2)^2 + 1/12n = 1/4 + 1/12n$.

2. Let $X \sim \text{Binom}(n, p)$

Consider the following estimator for p:

$$\hat{p}_1 = \frac{X+1}{n+2}$$

The bias of $\hat{p}_1 = \frac{1-2p}{n+2}$

The mean square error (MSE) of \hat{p}_1 is $\frac{(1-2p)^2+np(1-p)}{(n+2)^2}$.

The standard, unbiased estimator for p is

$$\hat{p} = \frac{X}{n}$$

If the biased estimator ever has a lower MSE, it will likely be either on the extremes (p = 0, p = 1) or in the middle (p = 1/2). The p = 1/2 case looks promising, since in

that case the bias is actually 0. The standard estimator \hat{p} is unbiased, so its MSE is equal to its variance. Taking p = 1/2, we have:

$$MSE(\hat{p}) = Var\left(\frac{X}{n}\right) = \frac{np(1-p)}{n^2} = \frac{1}{4}\frac{n}{n^2}$$

For the biased estimator, taking p = 1/2, we have:

$$MSE(\hat{p}_1) = \frac{np(1-p)}{(n+2)^2} = \frac{1}{4} \frac{n}{(n+2)^2}$$

This is smaller than the MSE of the standard estimator \hat{p} .

3. Let Y_1, Y_2, \ldots, Y_n be a random sample from a population with probability density function parameterized by θ given by

$$f_{\theta}(y) = \begin{cases} \theta y^{\theta - 1} & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta > 0$ is the parameter of interest.

(a) Show that the sample mean \bar{Y} is an unbiased estimator for $\frac{\theta}{\theta+1}$.

Since the expected value of \overline{Y} is the population mean μ , first we find μ .

$$\mu = \int_0^1 y \theta y^{\theta - 1} dy$$
$$= \int_0^1 \theta y^{\theta} dy$$
$$= \theta \frac{y^{\theta + 1}}{\theta + 1} \Big|_1^0$$
$$= \frac{\theta}{\theta + 1}$$

(b) Show that the sample mean \bar{Y} is a consistent estimator for $\frac{\theta}{\theta+1}$.

Since the estimator is unbiased, for consistency all we have to do is show that its variance goes to 0 as n goes to infinity. We use the Magic Variance Formula to find the population variance. Let Y be a sample from the population. Then

$$\mathbb{E}(Y^2) = \int_0^1 y^2 \theta y^{\theta - 1} dy$$
$$= \int_0^1 \theta y^{\theta + 1} dy$$
$$= \theta \frac{y^{\theta + 2}}{\theta + 2} \Big|_0^1$$
$$= \frac{\theta}{\theta + 2}$$

By the Magic Variance Formula, for the population variance we have

$$\sigma^{2} = \mathbb{E}(Y^{2}) - [\mathbb{E}(Y)]^{2}$$
$$= \frac{\theta}{\theta + 2} - \left[\frac{\theta}{\theta + 1}\right]^{2}$$

To get the variance of the sample mean, we divide this by n. This gives us:

$$Var(\bar{Y}) = \frac{1}{n} \left(\frac{\theta}{\theta + 2} - \left[\frac{\theta}{\theta + 1} \right]^2 \right)$$

Since everything inside the parentheses is constant, this goes to 0 as n goes to infinity. It is enough to note that since the population variance is finite, the sample variance must go to 0 as n goes to infinity.

4. Let Y_1, Y_2, \ldots, Y_n be a random sample from a population with probability density function parameterized by θ given by

$$f_{\theta}(y) = \begin{cases} (\theta + 1)y^{\theta} & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

where $\theta > -1$ is the parameter of interest.

(a) Find an estimator for θ using the method of moments.

In the method of moments, we set the population mean $\mu = \overline{Y}$ and solve for θ .

$$\mu = \int_0^1 y(\theta + 1) y^{\theta} dy$$
$$= \int_0^1 (\theta + 1) y^{\theta + 1} dy$$
$$= (\theta + 1) \frac{y^{\theta + 2}}{\theta + 2} \Big|_0^1$$
$$= \frac{\theta + 1}{\theta + 2}$$

Now we set $\mu = \overline{Y}$ and solve for θ .

$$\begin{aligned} \frac{\theta+1}{\theta+2} &= \bar{Y} \\ \theta+1 &= \bar{Y}(\theta+2) = \bar{Y}\theta + 2\bar{Y} \\ \theta(1-\bar{Y}) &= 2\bar{Y} - 1 \\ \theta &= \frac{2\bar{Y} - 1}{1-\bar{Y}} \end{aligned}$$

Thus the method of moments estimator is:

$$\hat{\theta} = \frac{2\bar{Y} - 1}{1 - \bar{Y}}$$

(b) Find the maximum likelihood estimator (MLE) for θ . Compare this to your answer from (a).

First we find the likelihood function. For this density function, we have:

$$L(Y_1, \dots, Y_n | \theta) = (\theta + 1)Y_1^{\theta} \cdots (\theta + 1)Y_n^{\theta}$$
$$= (\theta + 1)^n (Y_1 \cdots Y_n)^{\theta}$$

We want to find the value of θ which maximizes this. To do so, we can take the derivative with respect to θ and set it equal to 0. Since we have a product of things involving θ , it is easier to take the log to turn the product into a sum and to then maximize the log likelihood function. This is the same thing we did for the geometric distribution. First we find the log likelihood function.

$$\log L(Y_1, \dots, Y_n | \theta) = \log \left[(\theta + 1)^n (Y_1 \cdots Y_n)^\theta \right]$$
$$= n \log(\theta + 1) + \theta \log(Y_1 \cdots Y_n)$$
$$= n \log(\theta + 1) + \theta \sum_{i=1}^n \log(Y_i)$$

To find the value of θ which maximizes this, we take the derivative with respect to θ and set it equal to 0.

$$\frac{d}{d\theta} \log L(Y_1, \dots, Y_n | \theta) = \frac{d}{d\theta} \left[n \log(\theta + 1) + \theta \sum_{i=1}^n \log(Y_i) \right]$$
$$= \frac{n}{\theta + 1} + \sum_{i=1}^n \log(Y_i)$$

Setting this equal to 0:

$$\frac{n}{\theta + 1} = -\sum_{i=1}^{n} \log(Y_i)$$
$$\theta + 1 = -\frac{n}{\sum_{i=1}^{n} \log(Y_i)}$$
$$\theta = -1 - \frac{n}{\sum_{i=1}^{n} \log(Y_i)}$$