APMA 1650 - Homework 9

1. The reading on a voltmeter is uniformly distributed over the interval $[\theta, \theta+1]$, where θ is the true voltage of the circuit. Using your voltmeter, you take n consecutive voltage readings Y_{1}, \ldots, Y_{n} from a single circuit.
(a) Show that the sample mean \bar{Y} is a biased estimator for θ, and compute the bias of \bar{Y}.

First we find the expected value of \bar{Y}. We know from class that $\mathbb{E}(\bar{Y}=\mu$, where μ is the population mean. Since the population has a uniform distribution, $\mu=(\theta+(\theta+1)) / 2=\theta+1 / 2$. Since this is not θ, our estimator is biased. The bias is $(\theta+1 / 2)-\theta=1 / 2$.
(b) Find a function of \bar{Y} which is an unbiased estimator of θ.

To turn the expected value of \bar{Y} into θ, all we have to do is subtract $1 / 2$. Thus $\bar{Y}-1 / 2$ is an unbiased esimator for θ.
(c) Find the MSE of \bar{Y} (the biased estimator) when \bar{Y} is used as an estimator of θ.

We have found the bias of \bar{Y} so we only have to compute its variance. We know that $\operatorname{Var}(\bar{Y})=\sigma^{2} / n$, where σ^{2} is the population variance. Since this is a uniform distribution,

$$
\sigma^{2}=\frac{((\theta+1)-\theta)^{2}}{12}=\frac{1}{12}
$$

Thus the MSE is $(1 / 2)^{2}+1 / 12 n=1 / 4+1 / 12 n$.
2. Let $X \sim \operatorname{Binom}(n, p)$

Consider the following estimator for p :

$$
\hat{p}_{1}=\frac{X+1}{n+2}
$$

The bias of $\hat{p}_{1}=\frac{1-2 p}{n+2}$
The mean square error (MSE) of \hat{p}_{1} is $\frac{(1-2 p)^{2}+n p(1-p)}{(n+2)^{2}}$.
The standard, unbiased estimator for p is

$$
\hat{p}=\frac{X}{n}
$$

If the biased estimator ever has a lower MSE, it will likely be either on the extremes $(p=0, p=1)$ or in the middle $(p=1 / 2)$. The $p=1 / 2$ case looks promising, since in
that case the bias is actually 0 . The standard estimator \hat{p} is unbiased, so its MSE is equal to its variance. Taking $p=1 / 2$, we have:

$$
\operatorname{MSE}(\hat{p})=\operatorname{Var}\left(\frac{X}{n}\right)=\frac{n p(1-p)}{n^{2}}=\frac{1}{4} \frac{n}{n^{2}}
$$

For the biased estimator, taking $p=1 / 2$, we have:

$$
\operatorname{MSE}\left(\hat{p}_{1}\right)=\frac{n p(1-p)}{(n+2)^{2}}=\frac{1}{4} \frac{n}{(n+2)^{2}}
$$

This is smaller than the MSE of the standard estimator \hat{p}.
3. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a population with probability density function parameterized by θ given by

$$
f_{\theta}(y)= \begin{cases}\theta y^{\theta-1} & 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is the parameter of interest.
(a) Show that the sample mean \bar{Y} is an unbiased estimator for $\frac{\theta}{\theta+1}$.

Since the expected value of \bar{Y} is the population mean μ, first we find μ.

$$
\begin{aligned}
\mu & =\int_{0}^{1} y \theta y^{\theta-1} d y \\
& =\int_{0}^{1} \theta y y^{\theta} d y \\
& =\left.\theta \frac{y^{\theta+1}}{\theta+1}\right|_{1} ^{0} \\
& =\frac{\theta}{\theta+1}
\end{aligned}
$$

(b) Show that the sample mean \bar{Y} is a consistent estimator for $\frac{\theta}{\theta+1}$.

Since the estimator is unbiased, for consistency all we have to do is show that its variance goes to 0 as n goes to infinity. We use the Magic Variance Formula to find the population variance. Let Y be a sample from the population. Then

$$
\begin{aligned}
\mathbb{E}\left(Y^{2}\right) & =\int_{0}^{1} y^{2} \theta y^{\theta-1} d y \\
& =\int_{0}^{1} \theta y^{\theta+1} d y \\
& =\left.\theta \frac{y^{\theta+2}}{\theta+2}\right|_{0} ^{1} \\
& =\frac{\theta}{\theta+2}
\end{aligned}
$$

By the Magic Variance Formula, for the population variance we have

$$
\begin{aligned}
\sigma^{2} & =\mathbb{E}\left(Y^{2}\right)-[\mathbb{E}(Y)]^{2} \\
& =\frac{\theta}{\theta+2}-\left[\frac{\theta}{\theta+1}\right]^{2}
\end{aligned}
$$

To get the variance of the sample mean, we divide this by n. This gives us:

$$
\operatorname{Var}(\bar{Y})=\frac{1}{n}\left(\frac{\theta}{\theta+2}-\left[\frac{\theta}{\theta+1}\right]^{2}\right)
$$

Since everything inside the parentheses is constant, this goes to 0 as n goes to infinity. It is enough to note that since the population variance is finite, the sample variance must go to 0 as n goes to infinity.
4. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a population with probability density function parameterized by θ given by

$$
f_{\theta}(y)= \begin{cases}(\theta+1) y^{\theta} & 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>-1$ is the parameter of interest.
(a) Find an estimator for θ using the method of moments.

In the method of moments, we set the population mean $\mu=\bar{Y}$ and solve for θ.

$$
\begin{aligned}
\mu & =\int_{0}^{1} y(\theta+1) y^{\theta} d y \\
& =\int_{0}^{1}(\theta+1) y^{\theta+1} d y \\
& =\left.(\theta+1) \frac{y^{\theta+2}}{\theta+2}\right|_{0} ^{1} \\
& =\frac{\theta+1}{\theta+2}
\end{aligned}
$$

Now we set $\mu=\bar{Y}$ and solve for θ.

$$
\begin{aligned}
\frac{\theta+1}{\theta+2} & =\bar{Y} \\
\theta+1 & =\bar{Y}(\theta+2)=\bar{Y} \theta+2 \bar{Y} \\
\theta(1-\bar{Y}) & =2 \bar{Y}-1 \\
\theta & =\frac{2 \bar{Y}-1}{1-\bar{Y}}
\end{aligned}
$$

Thus the method of moments estimator is:

$$
\hat{\theta}=\frac{2 \bar{Y}-1}{1-\bar{Y}}
$$

(b) Find the maximum likelihood estimator (MLE) for θ. Compare this to your answer from (a).

First we find the likelihood function. For this density function, we have:

$$
\begin{aligned}
L\left(Y_{1}, \ldots, Y_{n} \mid \theta\right) & =(\theta+1) Y_{1}^{\theta} \cdots(\theta+1) Y_{n}^{\theta} \\
& =(\theta+1)^{n}\left(Y_{1} \cdots Y_{n}\right)^{\theta}
\end{aligned}
$$

We want to find the value of θ which maximizes this. To do so, we can take the derivative with respect to θ and set it equal to 0 . Since we have a product of things involving θ, it is easier to take the log to turn the product into a sum and to then maximize the log likelihood function. This is the same thing we did for the geometric distribution. First we find the log likelihood function.

$$
\begin{aligned}
\log L\left(Y_{1}, \ldots, Y_{n} \mid \theta\right) & =\log \left[(\theta+1)^{n}\left(Y_{1} \cdots Y_{n}\right)^{\theta}\right] \\
& =n \log (\theta+1)+\theta \log \left(Y_{1} \cdots Y_{n}\right) \\
& =n \log (\theta+1)+\theta \sum_{i=1}^{n} \log \left(Y_{i}\right)
\end{aligned}
$$

To find the value of θ which maximizes this, we take the derivative with respect to θ and set it equal to 0 .

$$
\begin{aligned}
\frac{d}{d \theta} \log L\left(Y_{1}, \ldots, Y_{n} \mid \theta\right) & =\frac{d}{d \theta}\left[n \log (\theta+1)+\theta \sum_{i=1}^{n} \log \left(Y_{i}\right)\right] \\
& =\frac{n}{\theta+1}+\sum_{i=1}^{n} \log \left(Y_{i}\right)
\end{aligned}
$$

Setting this equal to 0:

$$
\begin{aligned}
\frac{n}{\theta+1} & =-\sum_{i=1}^{n} \log \left(Y_{i}\right) \\
\theta+1 & =-\frac{n}{\sum_{i=1}^{n} \log \left(Y_{i}\right)} \\
\theta & =-1-\frac{n}{\sum_{i=1}^{n} \log \left(Y_{i}\right)}
\end{aligned}
$$

