LECTURE: HYPOTHESIS TESTING (II)

1. Large Sample Hypothesis Tests

Goal: Hypothesis Testing when the sample is large
Setting: Parameter of interest θ
(1) Alternative hypothesis: $H_{a}: \theta>\theta_{0}$
(2) Null hypothesis, $H_{0}: \theta=\theta_{0}$
(3) Test statistic, $\hat{\theta}$ some unbiased estimator
(4) Rejection region (RR) $\hat{\theta} \geq k$ where k is TBA

Problem: How to find k ?

Recall:

$$
\alpha=P(\text { reject Null when Null is true })
$$

Goal: We're given α (think tolerance) and want to find k
STEP 1: If the sample is large (CLT) and null $\theta=\theta_{0}$ is true then

$$
\hat{\theta} \sim N\left(\theta_{0}, \hat{\sigma}^{2}\right)
$$

Here $\hat{\sigma}$ is the standard deviation of $\hat{\theta}$ and we used $E(\hat{\theta})=\theta=\theta_{0}$

STEP 2: By def of α and converting to Z we want to choose k with

$$
P(\hat{\theta} \geq k)=\alpha \Rightarrow P\left(\frac{\hat{\theta}-\theta_{0}}{\hat{\sigma}} \geq \frac{k-\theta_{0}}{\hat{\sigma}}\right)=\alpha \Rightarrow P\left(Z \geq \frac{k-\theta_{0}}{\hat{\sigma}}\right)=\alpha
$$

STEP 3: Using the Z table, we find z_{α} with $P\left(Z \geq z_{\alpha}\right)=\alpha$ hence

$$
\frac{k-\theta_{0}}{\hat{\sigma}}=z_{\alpha} \Rightarrow k=\theta_{0}+z_{\alpha} \hat{\sigma}
$$

Example 1:

Ice cream preferences in the US
$p=$ the proportion of people who prefer chocolate ice cream.
Suppose you sample 100 people and 60 of them favor chocolate
Does the evidence support chocolate being favored at $\alpha=0.05$?
Alternative hypothesis: $p \geq 0.5$
Null Hypothesis: $p=0.5$
Test Statistic: $\hat{p}=\frac{60}{100}=0.6$
RR: $\alpha=0.05$ and by the Z-table $P(Z \geq 1.64) \approx 0.05$ so $z_{\alpha}=1.64$

$$
\hat{\sigma}=\operatorname{Standard} \operatorname{Dev}(\hat{p})=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{(0.5)(0.5)}{100}}=0.05
$$

(We used $\hat{p}=\frac{Y}{n}$ and $Y \sim \operatorname{Binom}(n, p)$ and $p=0.5$ by Null Hyp)

$$
k=0.5+z_{\alpha} \hat{\sigma}=0.5+1.64(0.05)=0.582
$$

Thus the rejection region is $\{\hat{p} \geq 0.582\}$
Answer: $\hat{p}=0.6$ falls inside the rejection region, thus we can reject our null hypothesis with a level of 0.05 , we are 95% confident that chocolate is favored

2. Two-Tailed Hypothesis Tests

Similarly, we can do this for a two-tailed hypothesis test $\left|\hat{\theta}-\theta_{0}\right| \geq k$ STEP 1:

$$
P\left(\left|\hat{\theta}-\theta_{0}\right| \geq k\right)=\alpha \Rightarrow P\left(\left|\frac{\hat{\theta}-\theta_{0}}{\hat{\sigma}}\right| \geq \frac{k}{\hat{\sigma}}\right)=\alpha \Rightarrow P\left(|Z| \geq \frac{k}{\hat{\sigma}}\right)=\alpha
$$

STEP 2: By the method of splitting the difference (see picture) it is enough to have

$$
P\left(Z \leq-\frac{k}{\hat{\sigma}}\right)=\alpha / 2 \text { and } P\left(Z \geq \frac{k}{\hat{\sigma}}\right)=\alpha / 2
$$

STEP 3: Use the Z table to find $z_{\alpha / 2}$ and therefore

$$
\frac{k}{\hat{\sigma}}=z_{\alpha / 2} \Rightarrow k=z_{\alpha / 2} \hat{\sigma}
$$

STEP 4: Hence our rejection region is

$$
\left\{\left|\hat{\theta}-\theta_{0}\right| \geq z_{\alpha / 2} \hat{\sigma}\right\}
$$

Example 2:

You're designing a ball bearing machine which produces ball bearings that are 5 mm in diameter, but you suspect that there is something wrong with the machine

You sample 64 ball bearings and obtain a sample mean of 4.98 mm and a sample standard deviation of 0.1 mm

Can you conclude at a level of 0.95 that there is something wrong with the machine?

Alternative hypothesis: $\mu \neq 5$
Null Hypothesis: $\mu=5$
Test Statistic: $\bar{Y}=4.98$
RR: $\alpha=0.05 \Rightarrow \alpha / 2=0.025$ and $P(Z \geq 1.96) \approx 0.025$ so $z_{\alpha / 2}=1.96$
Since do not know σ we use S in place of σ

$$
\begin{gathered}
\hat{\sigma} \approx \frac{S}{\sqrt{n}}=\frac{0.1}{\sqrt{64}}=\frac{0.1}{8}=0.0125 \\
k=z_{\alpha / 2} \hat{\sigma}=(1.96)(0.0125)=0.0245
\end{gathered}
$$

The rejection region is therefore:

$$
\{|\bar{Y}-5| \geq 0.0245\}=\{\bar{Y} \leq 4.9755 \text { or } \bar{Y} \geq 5.0245\}
$$

Answer: Since $\bar{Y}=4.98$ is not in our rejection region, we do not reject the null hypothesis; you do not have to do maintenance on the machine.

3. Type II Error

So far: We have fixed α and found k such that RR is $\{\hat{\theta} \geq k\}$
Goal: Find the type II error β

Recall:

$$
\begin{aligned}
\beta & =P(\text { accept Null when Null is false }) \\
& =P(\hat{\theta} \text { lies outside } \mathrm{RR} \text { when Alt is true })
\end{aligned}
$$

Same setting as before, with $R R\{\hat{\theta} \geq k\}$

Definition:

$\theta_{a}=$ the true (alternative) value of θ

Example: In the ice cream example we had $\theta_{0}=0.5$ but the true value may have been $\theta_{a}=0.7$

By definition of β we have $\beta=P\left(\hat{\theta} \leq k\right.$ given $\left.\theta=\theta_{0}\right)$
Upshot: Now we have $\theta=\theta_{a}$ so $\hat{\theta} \sim N\left(\theta_{a}, \hat{\sigma}^{2}\right)$ and converting to Z

$$
\beta=P(\hat{\theta} \leq k)=P\left(\frac{\hat{\theta}-\theta_{a}}{\hat{\sigma}} \leq \frac{k-\theta_{a}}{\hat{\sigma}}\right)=P\left(Z \leq \frac{k-\theta_{a}}{\hat{\sigma}}\right)
$$

Example 3:

You're polling the cream preferences in the US.
$p=$ the proportion of chocolate supporters
You sample 100 people and 60 of them prefer chocolate
As before, you create a hypothesis test with $\alpha=0.05$, for which the RR is $\{\hat{p} \geq 0.582\}$

Calculate β given $p_{a}=0.60$
In this case, since $p_{a}=0.60$ we estimate $\hat{\sigma}$ using $p=p_{a}$

$$
\begin{gathered}
\hat{\sigma} \approx \sqrt{\frac{p_{a}\left(1-p_{a}\right)}{n}}=\sqrt{\frac{(0.6)(0.4)}{100}}=0.049 \\
\beta=P\left(Z \leq \frac{k-p_{a}}{\hat{\sigma}}\right)=P\left(Z \leq \frac{0.58-0.60}{0.049}\right)=P(Z \leq-0.41)=0.3409
\end{gathered}
$$

