LECTURE: FINAL EXAM - REVIEW

1. MLE

Example 1:

Let $Y_{1}, Y_{2}, \cdots Y_{n}$ be iid samples from a distribution with pdf

$$
f(y)= \begin{cases}\theta y^{\theta-1} & \text { if } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Here $\theta>-1$ is the parameter of interest
(a) Find the method of moments estimator for θ

STEP 1: First find the mean μ
$\mu=\int_{-\infty}^{\infty} y f(y) d y=\int_{0}^{1} y\left(\theta y^{\theta-1}\right) d y=\int_{0}^{1} \theta y^{\theta} d y=\theta\left[\frac{y^{\theta+1}}{\theta+1}\right]_{0}^{1}=\frac{\theta}{\theta+1}$
STEP 2: Solve for θ in terms of μ
$\frac{\theta}{\theta+1}=\mu \Rightarrow \theta=\mu(\theta+1) \Rightarrow \theta=\mu \theta+\mu \Rightarrow \theta(1-\mu)=\mu \Rightarrow \theta=\frac{\mu}{1-\mu}$
STEP 3: Replace μ with \bar{Y}

$$
\hat{\theta}=\frac{\bar{Y}}{1-\bar{Y}}
$$

(b) Find the MLE for θ

STEP 1: Find $L\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \theta\right)$

$$
\begin{aligned}
L\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \theta\right) & =f\left(Y_{1}\right) f\left(Y_{2}\right) \cdots f\left(Y_{n}\right) \\
& =\left(\theta Y_{1}^{\theta-1}\right)\left(\theta Y_{2}^{\theta-1}\right) \cdots\left(\theta Y_{n}^{\theta-1}\right) \\
& =\theta^{n}\left(Y_{1} \cdots Y_{n}\right)^{\theta-1}
\end{aligned}
$$

STEP 2:

$\ln \left(L\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \theta\right)\right)=\ln \left(\theta^{n}\left(Y_{1} \cdots Y_{n}\right)^{\theta-1}\right)=n \ln (\theta)+(\theta-1) \ln \left(Y_{1} \cdots Y_{n}\right)$
STEP 3: Differentiate with respect to θ

$$
\begin{aligned}
\frac{d}{d \theta} \ln \left(L\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \theta\right)\right) & =\frac{d}{d \theta}\left(n \ln (\theta)+(\theta-1) \ln \left(Y_{1} \cdots Y_{n}\right)\right) \\
& =\left(\frac{n}{\theta}\right)+\ln \left(Y_{1} \cdots Y_{n}\right)=0 \\
\frac{n}{\theta}=-\ln \left(Y_{1} \cdots Y_{n}\right) \Rightarrow \frac{\theta}{n} & =-\frac{1}{\ln \left(Y_{1} \cdots Y_{n}\right)} \Rightarrow \theta=\frac{-n}{\ln \left(Y_{1} \cdots Y_{n}\right)}
\end{aligned}
$$

STEP 4: Answer

$$
\hat{\theta}=\frac{-n}{\ln \left(Y_{1} \cdots Y_{n}\right)}=\frac{-n}{\ln \left(Y_{1}\right)+\cdots+\ln \left(Y_{n}\right)}=\frac{-n}{\sum_{i=1}^{n} \ln \left(Y_{i}\right)}
$$

2. Confidence Intervals

Example 2:

(a) The amount of time it takes you to walk to your classroom is random and has a standard deviation of 6 mins. Suppose you walk to the classroom 81 times. The average amount of time is 18 mins. Give a 95% confidence interval for the mean walking time, assuming $P(Z \leq-2)=0.025$

Since the sample size $n=81$ is large, the confidence interval is

$$
[\hat{L}, \hat{U}]=\left[\bar{Y}-\hat{\sigma}\left(z_{\alpha / 2}\right), \bar{Y}+\hat{\sigma}\left(z_{\alpha / 2}\right)\right]
$$

Here $\bar{Y}=18$ and since $\sigma=6$ is known we use

$$
\hat{\sigma}=\frac{\sigma}{\sqrt{n}}=\frac{6}{\sqrt{81}}=\frac{6}{9}=\frac{2}{3}
$$

We want $1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / 2=0.025$
From the note above we get $P(Z \leq-2)=0.025$ and so $z_{\alpha / 2}=2$
Therefore our confidence interval is

$$
[\hat{L}, \hat{U}]=\left[18-\left(\frac{2}{3}\right)(2), 18+\left(\frac{2}{3}\right)(2)\right]=\left[\frac{50}{3}, \frac{58}{3}\right]=[16.67,19.33]
$$

(b) Assume the average is still 18 mins and the standard deviation 6 , and $P(Z \leq-2)=0.025$ how many times do you need to walk to the classroom so that the total length of the 95% confidence interval is less than 2 mins?

The length of the interval $[\hat{L}, \hat{U}]=\left[\bar{Y}-\hat{\sigma}\left(z_{\alpha / 2}\right), \bar{Y}+\hat{\sigma}\left(z_{\alpha / 2}\right)\right]$ is

$$
\bar{Y}+\hat{\sigma}\left(z_{\alpha / 2}\right)-\left(\bar{Y}-\hat{\sigma}\left(z_{\alpha / 2}\right)\right)=2 \hat{\sigma}\left(z_{\alpha / 2}\right)
$$

Here $\hat{\sigma}=\frac{\sigma}{\sqrt{n}}=\frac{6}{\sqrt{n}}$ and since $\alpha=0.95$ we still have $z_{\alpha / 2}=2$ and so

$$
\mathscr{2} \hat{\sigma}\left(z_{\alpha / 2}\right) \leq \mathcal{Z} \Rightarrow\left(\frac{6}{\sqrt{n}}\right)(2) \leq 1 \Rightarrow \frac{1}{\sqrt{n}} \leq \frac{1}{12} \Rightarrow \sqrt{n} \geq 12 \Rightarrow n \geq 144
$$

Hence you need to walk at least 144 times

3. Hypothesis Testing

Example 3:

It is thought that university students do not get enough sleep during the semester.

You claim that students get less than 7 hours of sleep per day
A random sample of 49 students was taken with a sample mean of 6.7 hours and a sample standard deviation 0.7 hours
(a) Set up the 4 components of a hypothesis test

Parameter of interest $\mu=$ the average amount of sleep
(1) Alternative hypothesis: $\mu<7$
(2) Null hypothesis: $\mu=7$
(3) Test statistic: $\bar{Y}=6.7$
(4) Rejection Region $\{\bar{Y} \leq k\}$
(b) Is your claim supported at the 0.05 level?

You could change $\mu \leq 7$ to $-\mu \geq-7$ but here it is easier to do everything from scratch

Since we don't know σ we use S instead

$$
\hat{\sigma}=\frac{S}{\sqrt{n}}=\frac{0.7}{\sqrt{49}}=\frac{0.7}{7}=0.1
$$

Since the sample size is large we convert to Z

$$
P(\bar{Y} \leq k)=0.05 \Rightarrow P\left(\frac{\bar{Y}-7}{\hat{\sigma}} \leq \frac{k-7}{\hat{\sigma}}\right)=0.05 \Rightarrow P\left(Z \leq \frac{k-7}{0.1}\right)=0.05
$$

By the Z-table we get $P(Z \leq-1.64) \approx 0.05$ and so

$$
\frac{k-7}{0.1}=-1.64 \Rightarrow k=7-(1.64)(0.1)=7-0.164=6.836
$$

Hence our rejection region is $\{\bar{Y} \leq 6.836\}$
Answer: Since the test statistic $\bar{Y}=6.7$ is in the rejection region, since $6.7 \leq 6.836$, we reject the null hypothesis, and so our claim is supported with a level of $\alpha=0.05$
(c) What is the p-value of this test?

Here the observed value is $\bar{Y}=6.7$

$$
\begin{aligned}
p \text {-value } & =P(\bar{Y} \leq 6.7 \text { given Null is true }) \\
& =P(\bar{Y} \leq 6.7 \text { given } \mu=7) \\
& =P\left(\frac{\bar{Y}-7}{\hat{\sigma}} \leq \frac{6.7-7}{0.1}\right) \\
& =P(Z \leq-3) \\
& =0.0013
\end{aligned}
$$

(d) Suppose we have reason to suspect the mean number of hours of students sleep is actually 6 .

Considering $\mu_{a}=6$ what is β for this test?

$$
\begin{aligned}
\beta & =P(\bar{Y} \text { is outside RR when Alt is true }) \\
& =P(\bar{Y} \geq k) \text { given } \mu=6 \\
& =P(\bar{Y} \geq 6.836) \text { given } \mu=6 \\
& =P\left(\frac{\bar{Y}-6}{\hat{\sigma}} \geq \frac{6.836-6}{0.1}\right) \\
& =P(Z \geq 8.36) \\
& =0.0000001
\end{aligned}
$$

4. Consistency

Example 4:

There are three boxes, containing $0, \theta, \theta+1$ jellybeans.
Each of n people opens a box uniformly at random and takes all the jellybeans in the box and the boxes are reset after each person takes their turn

Let $Y_{1}, Y_{2} \cdots, Y_{n}$ be the number of beans taken by each person
(a) Calculate the Bias of $\hat{\theta}=\bar{Y}$ as an estimator for θ

$$
\operatorname{Bias}(\hat{\theta})=E(\hat{\theta})-\theta
$$

$$
E(\hat{\theta})=E(\bar{Y})=E\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}\right)
$$

Since each box has a probability of $\frac{1}{3}$ of being picked, we have

$$
\begin{gathered}
E\left(Y_{i}\right)=0\left(\frac{1}{3}\right)+\theta\left(\frac{1}{3}\right)+(\theta+1)\left(\frac{1}{3}\right)=\frac{2 \theta+1}{3} \\
E(\hat{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{2 \theta+1}{3}\right)=\frac{2 \theta+1}{3}
\end{gathered}
$$

$\operatorname{Bias}(\hat{\theta})=E(\hat{\theta})-\theta=\left(\frac{2 \theta+1}{3}\right)-\theta=\frac{2 \theta+1-3 \theta}{3}=\frac{1-\theta}{3}$
(b) For what value of θ is $\hat{\theta}$ an unbiased estimator?

$$
\operatorname{Bias}(\hat{\theta})=0 \Rightarrow \frac{1-\theta}{3}=0 \Rightarrow \theta=1
$$

(c) In that case, show that $\hat{\theta}$ is consistent for θ

Since $\hat{\theta}$ is unbiased, it is enough to show that $\operatorname{Var}(\hat{\theta})$ goes to 0 as $n \rightarrow \infty$

Since the Y_{i} are independent, we have

$$
\operatorname{Var}(\hat{\theta})=\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)
$$

By the magic variance formula

$$
\operatorname{Var}\left(Y_{i}\right)=E\left(Y_{i}^{2}\right)-\left(E\left(Y_{i}\right)\right)^{2}
$$

$$
E\left(Y_{i}^{2}\right)=0^{2}\left(\frac{1}{3}\right)+1^{2}\left(\frac{1}{3}\right)+2^{2}\left(\frac{1}{3}\right)=\frac{5}{3}
$$

Since $E\left(Y_{i}\right)=\frac{2(1)+1}{3}=1$ we get

$$
\operatorname{Var}\left(Y_{i}\right)=\frac{5}{3}-(1)^{2}=\frac{2}{3}
$$

Hence $\operatorname{Var}(\hat{\theta})=\frac{1}{n^{2}} \sum_{i=1}^{n} \frac{2}{3}=\frac{1}{n^{2}}\left(\frac{2}{3} n\right)=\frac{2}{3}\left(\frac{1}{n}\right) \xrightarrow{n \rightarrow \infty} 0$
Therefore $\hat{\theta}$ is consistent for θ

