APMA 1941G - HOMEWORK 1

Problem 1: (4 points)

In the "Acoustic approximation in fluid mechanics" example from lecture, show that p^1 and \mathbf{u}^1 satisfy the following PDE, where

$$c_0 := \sqrt{g'(\rho^0)}$$
 and $\rho^0 \neq 0$

$$\begin{cases} p_{tt}^1 - c_0^2 \,\Delta p^1 = 0\\ \mathbf{u}_{tt}^1 - c_0^2 \nabla \left(\operatorname{div} \mathbf{u}^1 \right) = 0 \end{cases}$$

Problem 2: (16 points, 4 points each)

Suppose $u_0 = u_0(x)$ is a solution of

$$-u_0''(x) + V(x)u_0(x) = \lambda_0 u_0(x)$$
(H)

With $\lim_{|x|\to\infty} u_0(x) = 0$ where $x \in \mathbb{R}$, $\lambda_0 \in \mathbb{R}$, and V(x) is given

Suppose we want to solve the following as a perturbation of (H)

$$-u_{\epsilon}''(x) + V(x)u_{\epsilon}(x) + \epsilon W(x)u_{\epsilon}(x) = \lambda_{\epsilon}u_{\epsilon}(x) \qquad (H_{\epsilon})$$

With $\lim_{|x|\to\infty} u_{\epsilon}(x) = 0$ where W = W(x) is given

(a) Expand u_{ϵ} and λ_{ϵ} out as

$$u_{\epsilon} = u_0 + \epsilon u_1 + \epsilon^2 u_2 + \cdots$$
$$\lambda_{\epsilon} = \lambda_0 + \epsilon \lambda_1 + \epsilon^2 \lambda_2 + \cdots$$

Plug this expansion into (H_{ϵ}) and show that the $O(\epsilon^k)$ -terms (for $k = 1, 2, \cdots$) give you the following equation

$$-u_k'' + (V - \lambda_0)u_k = -Wu_{k-1} + \sum_{j=1}^k \lambda_j u_{k-j}$$
(1)

What do you get when you compare the O(1)-terms?

Hint: The following formula might be useful:

$$\left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} a_j b_{k-j}$$

(b) Let's look for solutions of the form

$$u_k(x) = u_0(x)w_k(x)$$

Where w_k is to be found

Plug this into (1), and multiply by u_0 and obtain

$$\left(u_0^2 w_k'\right)' = u_0^2 \left[W w_{k-1} - \sum_{j=1}^k \lambda_j w_{k-j} \right]$$
(2)

(c) Integrate (2) over \mathbb{R} , assuming that

$$u_0^2(x)w_k'(x) \to 0$$
 as $|x| \to \infty$

And solve for λ_k to obtain

$$\lambda_k = \frac{\int_{-\infty}^{\infty} u_0 \left[W u_{k-1} - \sum_{j=1}^{k-1} \lambda_j u_{k-j} \right]}{\int_{-\infty}^{\infty} u_0^2}$$

This gives us a recursive definition of λ_k

(d) Integrate (2) over $(-\infty, t)$ for t > 0, again assuming that $u_0^2(x)w'_k(x)$ goes to 0 at $-\infty$)

Then integrate over $(-\infty, x)$ assuming $w_k(x)$ goes to 0 at $-\infty$)

And finally use $u_k(x) = u_0(x)w_k(x)$ to conclude

$$u_k(x) = u_0(x) \int_{-\infty}^x \frac{1}{u_0^2(t)} \int_{-\infty}^t u_0(s) \left[W(s)u_{k-1}(s) - \sum_{j=1}^k \lambda_j u_{k-j}(s) \right] ds dt.$$

This gives us a recursive definition of $u_k(x)$

This is an example of a Rayleigh-Schrödinger perturbation