APMA 0350 - FINAL EXAM

Name	
Brown ID	
Signature	

1. (5 points) Solve and write your answer in implicit form. Don't forget to check for exactness

$$
\left\{\begin{aligned}
\frac{d y}{d x} & =-\left(\frac{3 x^{2} y+2 y^{3}}{x^{3}+6 x y^{2}}\right) \\
y(1) & =2
\end{aligned}\right.
$$

\square
2. (5 points) Solve and write your answer in explicit form

$$
\left\{\begin{aligned}
t^{4}\left(y^{\prime}\right)+t^{3} y & =t^{4} \sin (t) \quad t>0 \\
y(\pi) & =2
\end{aligned}\right.
$$

\square
$y=$
3. (5 points) Solve using the method with $D y=y^{\prime}$

$$
y^{\prime \prime}-3 y^{\prime}-4 y=5 e^{4 t}
$$

Hint: Here it's easier to use $\left(D^{2}-3 D-4\right)=(D+1)(D-4)$

Note: If you don't remember that method, you can solve it using undetermined coefficients for a max of 4 points.

$$
y=\mid \square
$$

4. (5 points) Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y^{\prime}(0) & =0 \\
y(6) & =0
\end{aligned}\right.
$$

Eigenvalues	
Eigenfunctions	

5. (5 points) Use Laplace transforms to solve

$$
\left\{\begin{aligned}
y^{\prime \prime}+3 y^{\prime}+2 y & =12 e^{2 t} \\
y(0) & =4 \\
y^{\prime}(0) & =2
\end{aligned}\right.
$$

\square
$y=$
6. (5 points) Use Laplace transforms to solve

$$
\phi^{\prime}(t)+5 \int_{0}^{t} e^{2(t-\tau)} \phi(\tau) d \tau=0 \quad \text { with } \phi(0)=6
$$

\square
$\phi(t)=|\quad|$
7. (5 points) Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ AND draw a phase portrait where

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -2
\end{array}\right]
$$

8. (5 points) Use Variation of Parameters to solve $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$

$$
\text { Where } A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right] \text { and } \mathbf{f}=\left[\begin{array}{c}
e^{t} \\
2 e^{2 t}
\end{array}\right]
$$

9. (5 points) Find and classify the equilibrium point(s) of

$$
\left\{\begin{array}{l}
x^{\prime}=x-y^{2} \\
y^{\prime}=y-x^{2}
\end{array}\right.
$$

Equilibrium Point	Classification

10. $(5=2+3$ points $)$ You are the CEO of PeyUSPS, a mail delivery company that has distributors in the cities Peyamgeles and Tabriziville. Packages can be sent from one city to the other, or stay at the same location. Suppose 30% of the packages in Peyamgeles are sent to Tabriziville per day, and 60% of packages in Tabriziville are sent to Peyamgeles. Let $x(t)$ and $y(t)$ be the number of packages in Peyamgeles and Tabriziville respectively, where t is in days. Assume no other packages go in/out of the two cities.
(a) Set up an ODE model of the form $\mathbf{x}^{\prime}=A \mathbf{x}$
(b) Find the equilibrium points of (a) and their stability. Do not solve the system

