APMA 0359 - Homework II Solutions

September 17, 2023

1. Do the following ODE satisfy the assumptions of the Existence-Uniqueness Theorem from Lecture? Why or why not?
Recall:
Theorem 0.1 (Existence/Uniqueness). Consider the ODE

$$
\left\{\begin{array}{l}
y^{\prime}=f(y, t) \\
y(0)=y_{0}
\end{array}\right.
$$

where y_{0} is a given number. If f and $\frac{\partial f}{\partial y}$ are continuous, then the $O D E$ has a unique solution $y=y(t)$ for t close enough to 0 .
(a)

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{y}{t^{2}+1} \\
y(-1)=9
\end{array}\right.
$$

Solution: We have that

$$
f(y, t)=\frac{y}{t^{2}+1}
$$

and

$$
\frac{\partial}{\partial y}(f(y, t))=\frac{\partial}{\partial y}\left(\frac{y}{t^{2}+1}\right)=\frac{1}{t^{2}+1}
$$

Both are continuous everywhere, so the theorem holds.
(b)

$$
\left\{\frac{d y}{d t}=y^{2}(|t|+y) y(0)=2\right.
$$

Solution: We have that

$$
f(t, y)=y^{2}(|t|+y)=y^{2}|t|+y^{3}
$$

and

$$
\frac{\partial}{\partial y}(f(t, y))=2 y|t|=y^{2}|t|+2 y^{2}
$$

Both are continuous everywhere, so the theorem holds.
(c)

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{1}{y+1} \\
y(1)=-1
\end{array}\right.
$$

Solution:

We have that

$$
f(y, t)=\frac{1}{y+1}=(y+1)^{-1}
$$

and

$$
\frac{\partial}{\partial y}(f(y, t))=\frac{\partial}{\partial y}\left((y+1)^{-1}\right)=-(y-1)^{-2} .
$$

This ODE does not satisfy the assumptions of the theorem because $f(y, t)$ is not continuous near $t=1$. Using the initial condition, we see that $y(t=1)=-1$ and $f(-1,1)=\frac{1}{(-1)+1}$ which is undefined $\left(\frac{1}{0}\right)$.
2. Consider the equation

$$
y^{\prime}=(y+2)(y-1)(y-3)
$$

(a) Find the equilibrium solutions

Solution: We set $f(y)=0$ and find the equilibrium solutions $y=-2, y=1$, and $y=3$.
(b) Draw a bifurcation diagram (that table with signs)

Solution:

y	$-\infty$	-2		3
$y+2$	-	$\phi+$	+	+
$y-1$	-	$-\phi$	+	+
$y-3$	-	-	$-\phi+$	
y	$-\phi+\phi$	$-\phi+$		
y	y	\nearrow	$>$	\nearrow

(c) Draw a sketch of the equilibrium solutions and a couple of solutions between them (that graph with the curves).

Solution:

(d) Classify the equilibrium solutions as stable/unstable/bistable.

Solution: We see that $y=1$ is a stable equilibrium, and $y=-2$ and $y=3$ are unstable equilibria.

3. Solve using separation of variables.
(a) (Implicit form)

$$
\frac{d y}{d t}=\frac{t \sec (y)}{y\left(e^{t^{2}}\right)}
$$

Solution: First, we separate variables to find

$$
\frac{y}{\sec (y)} d y=t e^{-t^{2}} d t
$$

Using the trig identity $1 / \sec (y)=\cos (y)$ and integrating both sides, we obtain

$$
\int y \cos (y) d y=\int t e^{-t^{2}} d t
$$

Using integration by parts on the LHS $(u=y$ and $d v=\cos (y))$ and u-substitution on the RHS $\left(u=-t^{2}\right)$, we arrive at

$$
y \sin (y)+\cos (y)=\frac{-e^{-t^{2}}}{2}+C
$$

(b) (Remember the inital condition)

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{2 t+\sec ^{2}(t)}{2 y} \\
y(0)=-5
\end{array}\right.
$$

Solution: Separating and integrating both sides, we find

$$
\left.\int 2 y d y=\int t+\sec ^{2}(t)\right) d t
$$

Evaluating the integrals, we obtain

$$
\begin{aligned}
& y^{2}=t^{2}+\tan (t)+C \\
\Longrightarrow & y= \pm \sqrt{t^{2}+\tan (t)+C}
\end{aligned}
$$

Applying the intial condition $y(0)=-5$, we see that we must use $-\left(\sqrt{t^{2}+\tan (t)+C}\right)$ and find

$$
\begin{aligned}
-5 & =-\sqrt{0+C} \\
5 & =\sqrt{C} \\
\Longrightarrow C & =25 .
\end{aligned}
$$

Thus, we arrive at the final answer,

$$
y(t)=-\sqrt{t^{2}+\tan (t)+25}
$$

(c) (Beware of hidden solutions, see last example in the notes

$$
\frac{d y}{d t}=\frac{-t(y-1)^{2}}{3}
$$

Solution: First, we consider if $y \neq 1$. Then, we can separate to find

$$
\frac{1}{(y-1)^{2}} d y=\frac{-t}{3} d t
$$

Integrating both sides, we find

$$
\int(y-1)^{-2} d y=\int \frac{-t}{3} d t
$$

Evaluating, we obtain

$$
\frac{-1}{y-1}=\frac{-t^{2}}{6}+c
$$

We still need to solve for y (-1 point if student stopped here). Taking the reciprocal of both sides, we find

$$
\begin{aligned}
-(y-1) & =\frac{1}{\frac{-t^{2}}{6}+c} \\
& =\frac{6}{-t^{2}+6 c} \\
\Longrightarrow-y & =\frac{6}{-t^{2}+6 c}-1 \\
\Longrightarrow y(t) & =1+\frac{6}{t^{2}-6 c}
\end{aligned}
$$

If $y=1$, we also have a solution. The above case only worked for $y \neq 1$. Thus, we miss a solution as explained in class if only the above is worked out.
4. Suppose you're trying to model a population of bunnies. Initially there are 100 rabbits, and you notice that the initial growth rate is 0.08 bunnies/day. Moreover, due to limiting resources, it seems that the bunny population doesn't exceed 1000 rabbits.
(a) Set up a differential equations model for the number of rabbits and follow the steps from lecture to solve it. You can skip the partial fractions part if you wish.

Solution: First, we recognize set up the differential equation as in lecture as

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=0.08 y\left(1-\frac{y}{1000}\right. \\
y(0)=100
\end{array}\right.
$$

Separating and rewriting the LHS, we get

$$
\frac{1000}{y(1000-y)} d y=0.08 d t
$$

Applying partial fraction decomposition on the LHS, we rewrite and integrate as

$$
\int \frac{1}{y}-\frac{1}{1000-y} d y=\int 0.08 d t
$$

Evaluating and simplifying, we obtain

$$
\begin{aligned}
\ln |y|-\ln |1000-y| & =0.08 t+C_{1} \\
\ln \left|\frac{y}{1000-y}\right| & =0.08 t+C_{1} \\
\Longrightarrow\left|\frac{y}{1000-y}\right| & =e^{0.08 t+C_{1}} .
\end{aligned}
$$

Next, we aim to solve for y. Simplifying, we find

$$
\begin{aligned}
\frac{y}{1000-y} & = \pm e^{C_{1}} e^{0.08 t} \\
& =C_{2} e^{0.08 t}
\end{aligned}
$$

Cross multiplying, we get

$$
\begin{aligned}
y & =(1000-y) C_{2} e^{0.08 t} \\
& =1000 C_{2} e^{0.08 t}-y C_{2} e^{0.08 t}
\end{aligned}
$$

Lastly, we arrive at,

$$
\begin{aligned}
y\left(1+C_{2} e^{0.08 t}\right) & =1000 C_{2} e^{0.08 t} \\
\Longrightarrow y & =\frac{1000 C_{2} e^{0.08 t}}{1+C_{2} e^{0.08 t}}
\end{aligned}
$$

Using the I.C., we find,

$$
\begin{array}{r}
100=\frac{1000\left(C_{2}\right)}{1+C_{2}} \\
100+100 C_{2}=1000 C_{2} \\
100=900 C_{2} \\
\Longrightarrow C_{2}=\frac{1}{9}
\end{array}
$$

Thus, we arrive at the solution (with optional simplification),

$$
\begin{aligned}
y & =\frac{1000 e^{0.08 t}}{9\left(1+\left(\frac{1}{9} e^{0.08 t}\right)\right)} \\
& =\frac{1000 e^{0.08 t}}{9+e^{0.08 t}}\left(\frac{e^{-0.08 t}}{e^{-0.08 t}}\right) \\
& =\frac{1000}{9 e^{-0.08 t}+1} .
\end{aligned}
$$

(b) What is the limit of the solution in (a) as $t \rightarrow \infty$?

Solution: We know that the

$$
\lim _{t \rightarrow \infty} e^{-0.08 t}=0
$$

Thus, we find that

$$
\lim _{t \rightarrow \infty} \frac{1000}{9 e^{-0.08 t}+1}=\frac{1000}{0+1}=1000
$$

(c) For which t do we have $y(t)=900$? Please find an exact formula for t, as well as an approximate value (using your calculator).

Solution: We set up

$$
900=\frac{1000}{9 e^{-0.08 t}+1} .
$$

Simplifying, we obtain

$$
e^{-0.08 t}=\frac{1}{81}
$$

Taking the \ln of both sides, we find

$$
\begin{aligned}
\ln e^{-0.08 t} & =\ln \left(\frac{1}{81}\right) \\
\Longrightarrow t & =\frac{-\ln \left(\frac{1}{81}\right)}{0.08} \approx 54.9306
\end{aligned}
$$

5. Show that the function $y(t)$ whose graph is below cannot be a solution of an ODE of the form $y^{\prime}(t)=f(y(t))$.

Solution: We recall the definition of a function: A function from a set X to a set Y assigns to each element of X exactly one element of Y. Thus, the given form implies that $y(t)$ can be expressed as an input a of a function describing $y^{\prime}(t)$. This form is violated if the same value of $y(t)$ produces more than one value of $y^{\prime}(t)$. Thus, following the hint, we find a value of $y(t)$ which is the same for different t values and produce two different values of $y^{\prime}(t)$. By inspection of the graph, we choose the following t_{1} and t_{2} and roughly sketch the corresponding plot for $y^{\prime}(t)$.

Thus, we find that

$$
\begin{aligned}
y^{\prime}\left(t_{1}\right) & =f\left(y\left(t_{1}\right)\right)=f\left(y_{0}\right)>0, \text { and } \\
y^{\prime}\left(t_{2}\right) & =f\left(y\left(t_{1}\right)\right)=f\left(y_{0}\right)<0 .
\end{aligned}
$$

Thus, we arrive at a contradiction. This means that $y^{\prime}(t)$ cannot be expressed as a function of $y(t)$ and cannot be written in the form $y^{\prime}(t)=f(y(t))$.

