Homework 3 Solutions

Problem 1. Steps to solve using integrating factors:
1.) Write the equation in this form:

$$
\begin{equation*}
\frac{d y}{d x}+a(x) y=b(x) \tag{1}
\end{equation*}
$$

2.) Solve for the integrating factor:

$$
\mu=e^{\int a(x) d x}
$$

3.) Multiply (1) by μ, and rewrite the left-hand side as a derivative:

$$
\begin{gathered}
\mu\left(\frac{d y}{d x}+a(x) y\right)=\mu b(x) \\
\Longrightarrow \frac{d}{d x}(\mu y)=\mu b(x)
\end{gathered}
$$

4.) Integrate both sides and use the Fundamental Theorem of Calculus

$$
\begin{gathered}
\int \frac{d}{d x}(\mu y) d x=\int \mu b(x) d x \\
\Longrightarrow \mu y=B(x)+C
\end{gathered}
$$

5.) Divide by μ, and you have the solution.
(a) Step 1:

$$
\frac{d y}{d t}-2 y=t^{2} e^{2 t}
$$

Step 2:

$$
\begin{gathered}
a(t)=-2 \\
\Longrightarrow \int a(t) d t=\int-2 d t=-2 t \\
\Longrightarrow \mu=e^{\int a(t) d t}=e^{-2 t}
\end{gathered}
$$

Step 3:

$$
e^{-2 t}\left(\frac{d y}{d t}-2 y\right)=e^{-2 t}\left(t^{2} e^{2 t}\right)=t^{2}
$$

$$
\Longrightarrow \frac{d}{d t}\left(e^{-2 t} y\right)=t^{2}
$$

Step 4:

$$
\begin{gathered}
\int \frac{d}{d t}\left(e^{-2 t} y\right) d t=\int t^{2} d t \\
\Longrightarrow e^{-2 t} y=\frac{t^{3}}{3}+C
\end{gathered}
$$

Step 5:

$$
y=\left(\frac{t^{3}}{3}+C\right) e^{2 t}
$$

(b) Step 1:

$$
\frac{d y}{d t}+\frac{2}{t} y=\frac{\sin (t)}{t}
$$

Step 2:

$$
\begin{gathered}
a(t)=\frac{2}{t} \\
\Longrightarrow \int a(t) d t=\int \frac{2}{t} d t=2 \ln (t) \\
\mu=e^{\int a(t) d t}=e^{2 \ln (t)}=\left(e^{\ln (t)}\right)^{2}=t^{2}
\end{gathered}
$$

Step 3:

$$
\left.\begin{array}{c}
t^{2}\left(\frac{d y}{d t}\right.
\end{array}+\frac{2}{t} y\right)=t^{2}\left(\frac{\sin (t)}{t}\right)=t \sin (t),
$$

Step 4:

$$
\begin{gathered}
\int \frac{d}{d t}\left(t^{2} y\right) d t=\int t \sin (t) d t \\
\Longrightarrow t^{2} y=\sin (t)-t \cos (t)+C
\end{gathered}
$$

(Using integration my parts on the left side)
Step 5:

$$
y=\frac{\sin (t)-t \cos (t)+C}{t^{2}}
$$

Problem 2. (a) Compartment model for water:

$$
t=\text { time measured in days }
$$

$W(t)=$ amount of water in gallons in the tank at time t

Therefore,

$$
\begin{aligned}
& \int_{0}^{t} \frac{d W(s)}{d s} d s=\int_{0}^{t} 1 d s \\
& \Longrightarrow W(t)-W(0)=t \\
& \Longrightarrow W(t)=W(0)+t
\end{aligned}
$$

We know that $W(0)=100$, so

$$
W(t)=100+t
$$

Therefore, the amount of water reaches 200 gallons at $t=100$.
(b) Compartment model for chemical pollutant:

$$
P(t)=\text { amount of pollutant in grams in the tank at time } \mathrm{t}
$$

Therefore,

$$
\frac{d P}{d t}=20-\frac{P}{W(t)}=20-\frac{P}{100+t}
$$

We can solve this ODE with integrating factors:
Step 1:

$$
\frac{d P}{d t}+\frac{1}{100+t} P=20
$$

Step 2:

$$
\begin{aligned}
a(t) & =\frac{1}{100+t} \\
\Longrightarrow \mu=e^{\int a(t) d t} & =e^{\ln (100+t)}=100+t
\end{aligned}
$$

Step 3:

$$
\mu\left(\frac{d P}{d t}+\frac{1}{100+t} P\right)=\frac{d}{d t}(\mu P)=20 \mu=2000+20 t
$$

Step 4:

$$
\mu P=\int(2000+20 t)=2000 t+10 t^{2}+C
$$

Step 5:

$$
P(t)=\frac{2000 t+10 t^{2}+C}{\mu}=\frac{2000 t+10 t^{2}+C}{100+t}
$$

We know that $P(0)=0$ because the tank contains only clean water at time 0. Plugging in this initial condition gives us $P(0)=C / 100$, so $C=0$, and thus the solution is

$$
P(t)=\frac{2000 t+10 t^{2}}{100+t}=10 t * \frac{200+t}{100+t}
$$

(c) When $t=100$, the tank contains $P(100)=1500$ grams of pollutant.

Problem 3. (a) Time t is in independent variable, and its unit is months. Rabbit population $P(t)$ is a dependent variable, it depends on t, and its unit is rabbits.
(b) Using the trick from class,

$$
\begin{aligned}
\frac{P(t+h)-P(t)}{h} & =0.1 P(t)-0.3 P(t)+30=-0.2 P(t)+30 \\
& \Longrightarrow \frac{d P}{d t}=-0.2 P(t)+30
\end{aligned}
$$

and the initial condition is

$$
P(0)=50
$$

where $t=0$ is January.
(c) Equilibrium:

$$
\begin{aligned}
0 & =-0.2 P(t)+30 \\
& \Longrightarrow P(t)=150
\end{aligned}
$$

Bifurcation diagram:

	$-\infty$	150	∞
P^{\prime}	+	0	-
P	\nearrow	\longrightarrow	\searrow

Plot of equilibrium solution and two other solutions:

The equilibrium is stable.
(d) We can solve the ODE with integrating factors:

Step 1:

$$
\frac{d P(t)}{d t}+0.2 P(t)=30
$$

Step 2:

$$
\mu=e^{\int 0.2 d t}=e^{0.2 t}
$$

Step 3:

$$
\begin{gathered}
e^{0.2 t}\left(\frac{d P(t)}{d t}+0.2 P(t)\right)=30 e^{0.2 t} \\
\Longrightarrow \frac{d}{d t}\left(e^{0.2 t} P(t)\right)=30 e^{0.2 t}
\end{gathered}
$$

Step 4:

$$
\begin{aligned}
& \int \frac{d}{d t}\left(e^{0.2 t} P(t)\right) d t=\int 30 e^{0.2 t} d t \\
& \quad \Longrightarrow e^{0.2 t} P(t)=150 e^{0.2 t}+C
\end{aligned}
$$

Step 5:

$$
\begin{gathered}
P(t)=150+C e^{-0.2 t} \\
P(0)=150+C=50 \\
\Longrightarrow C=-100 \\
\Longrightarrow P(t)=150-100 e^{-0.2 t}
\end{gathered}
$$

(e) Since $e^{-0.2 t} \rightarrow 0$ as $t \rightarrow \infty$, we see that

$$
\begin{gathered}
\lim _{t \rightarrow \infty P(t)}=\lim _{t \rightarrow \infty}\left(150-100 e^{-0.2 t}\right) \\
=\lim _{t \rightarrow \infty}(150)+\lim _{t \rightarrow \infty}\left(-100 e^{-0.2 t}\right) \\
=150
\end{gathered}
$$

so the population of bunnies will approach 150 as $t \rightarrow \infty$.
Problem 4. If we let T denote the temperature of the pie, then we can set up the following ODE:

$$
\frac{d T}{d t}=k(22-T)=-k T+22 k
$$

where k is unknown for now. We can solve this with integrating factors:

$$
\begin{gathered}
\frac{d T}{d t}+k T=22 k \\
\Longrightarrow e^{k t}\left(\frac{d T}{d t}+k T\right)=\frac{d}{d t}\left(e^{k t} T\right)=22 k e^{k t} \\
\Longrightarrow e^{k t} T=22 e^{k t}+C \\
\Longrightarrow T(t)=22+C e^{-k t}
\end{gathered}
$$

We know that $T(0)=40$, and plugging this in gives $40=22+C$, so $C=18$. Our solution is now

$$
T(t)=22+18 e^{-k t}
$$

We also know that $T(1)=35$, and plugging this in gives

$$
\begin{gathered}
35=18 e^{-k}+22 \\
\Longrightarrow e^{-k}=\frac{13}{18} \\
\Longrightarrow k=-\ln \left(\frac{13}{18}\right) \approx 0.33,
\end{gathered}
$$

so our solution is now

$$
T(t)=18 e^{-0.33 t}+22
$$

We need to find t such that $T(t)=25$:

$$
\begin{gathered}
18 e^{-0.33 t}+22=25 \\
\Longrightarrow e^{-0.33 t}=\frac{1}{6} \\
\Longrightarrow t=\frac{\ln (1 / 6)}{-0.33} \approx 5.43 \text { minutes }
\end{gathered}
$$

