APMA 0350 - HOMEWORK 4

Problem 1: (5 points)
Apply Euler's method by hand with $N=4$ to find $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ on $[0,1]$ where

$$
\left\{\begin{aligned}
y^{\prime} & =-2 y+3 t \\
y(0) & =1
\end{aligned}\right.
$$

Note: Please don't use Python for this. You are allowed to use a calculator do the arithmetic and to use approximate values.

Problem 2: ($5=3+2$ points) Solve the following exact ODE. Leave your answer in implicit form. Don't forget to check for exactness
(a)

$$
\frac{d y}{d x}=-\left(\frac{e^{x} \sin (y)-2 y \sin (x)}{e^{x} \cos (y)+2 \cos (x)}\right)
$$

(b)

$$
\frac{d y}{d x}=-\left(\frac{f(x)}{g(y)}\right)
$$

Note: Your answer will involve antiderivatives F and G of f and g respectively. This shows that exact equations are more general than separation of variables.
(Turn page)

Problem 3: $(5=2+2+1$ points $)$
Find the general solution of the following ODE:
(a) $y^{\prime \prime}=y^{\prime}+y$ (this involves a number called the golden ratio)
(b) $6 y^{\prime \prime}-7 y^{\prime}+2 y=0$
(c) An ODE whose auxiliary equation is

$$
(r-1) r(r+1)(r+2)=0
$$

Problem 4: (5 points) Solve the following ODE

$$
\left\{\begin{aligned}
y^{\prime \prime}-3 y^{\prime}-28 y & =0 \\
y(0) & =3 \\
y^{\prime}(0) & =-1
\end{aligned}\right.
$$

