APMA 0359 - Homework 4 Solutions

October 4, 2023

1. Apply Euler's method by hand with $N=4$ to find $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ on $[0,1]$ where

$$
\left\{\begin{array}{l}
y^{\prime}=-2 y+3 t \\
y(0)=1
\end{array}\right.
$$

Solution:

Step 1: Find step size $h=\frac{a-b N}{=} \frac{1}{4}$
Step 2: Find $y_{0}, . ., y_{n}$ with $y_{n}=y_{n-1}+h\left(f\left(y_{n-1}, t_{n-1}\right.\right.$, where $t_{n}=h n$.

n	t_{n}	Method for y_{n}	y_{n}	$f\left(y_{n}, t_{n}\right)=-2 y_{n}+3 t_{n}$
0	0	$y_{0}=y(0)=1$	1	$-2(1)+3(0)=-2$
1	$\frac{1}{4}$	$y_{1}=(1)+\frac{1}{4}(-2)=\frac{1}{2}$	$\frac{1}{2}$	$-2\left(\frac{1}{2}\right)+3\left(\frac{1}{4}\right)=-\frac{1}{4}$
2	$\frac{1}{2}$	$y_{2}=\left(\frac{1}{2}\right)+\frac{1}{4}\left(-\frac{1}{4}\right)=\frac{7}{16}$	$\frac{7}{16}$	$-2\left(\frac{7}{16}\right)+3\left(\frac{1}{2}\right) 0=-\frac{1}{4}$
3	$\frac{3}{4}$	$y_{3}=\left(\frac{7}{16}\right)+\frac{1}{4}\left(\frac{5}{8}\right)=\frac{19}{32}$	$\frac{19}{32}$	$-2\left(\frac{19}{32}\right)+3\left(\frac{3}{4}\right)=\frac{17}{16}$
4	1	$y_{4}=\frac{19}{32}+\frac{1}{4}\left(\frac{17}{16}\right)=\frac{55}{64}$	$\frac{55}{64}$	

2. Solve the following exact ODE. Leave your answer in implicit form. Don't forget to check for exactness.
(a)

$$
\frac{d y}{d t}-\left(\frac{e^{x} \sin (y)-2 y \sin (x)}{e^{x} \cos (y)+2 \cos (x)}\right)
$$

Solution: We rewrite in the proper form as

$$
\underbrace{\left[e^{x} \cos (y)+2 \cos (x)\right]}_{Q} d x+\underbrace{\left[e^{x} \sin (y)-2 y \sin (x)\right]}_{P} d x
$$

We check for exactness by taking the following derivatives:

$$
\begin{gathered}
\left.Q_{x}=\left(e^{x} \cos (y)+2 \cos (x)\right)_{x}=e^{x} \cos (y)-2 \sin (x)\right) \\
P_{y}=\left(e^{x} \sin (y)-2 y \sin (x)\right)_{y}=-2 \sin (x)+e^{x} \cos (y)
\end{gathered}
$$

Next, we find f. We see that

$$
f_{x}=P \Longrightarrow \int e^{x} \sin (y)-2 y \sin (x) d x=e^{x} \sin (y)+2 y \cos (x)+g(y)
$$

and

$$
f_{y}=Q \Longrightarrow \int\left(e^{x} \cos (y)+2 \cos (x)\right) d y=e^{x} \sin (y)+h(x)
$$

This implies that

$$
f(x, y)=e^{x} \sin (x)+2 y \cos (x) .
$$

Thus, we arrive at the solution,

$$
e^{x} \sin (x)+2 y \cos (x)=C .
$$

(b)

$$
\frac{d y}{d x}=-\left(\frac{f(x)}{g(y)}\right) .
$$

Solution: We first rewrite as

$$
\underbrace{g(y)}_{Q} d y+\underbrace{f(x)}_{P} d x=0 .
$$

For exactness, we check that

$$
Q_{x}=[g(y)]_{x}=0=[f(x)]_{y}=P_{y} .
$$

Thus, we find

$$
f_{x}=P \Longrightarrow F=\int f(x) d x
$$

and

$$
f_{y}=Q \Longrightarrow G=\int g(y) d y
$$

Thus, we have that $F+G=C$.
3. Find the general solution of the following ODE:
(a) $y "=y^{\prime}+y$

Solution: We first rewrite this as

$$
y^{\prime \prime}-y^{\prime}-y=0
$$

which gives us

$$
r^{2}-r-1=0 .
$$

We fund the roots using the quadratic formula as $r=\frac{1 \pm \sqrt{5}}{2}$. Thus,

$$
y=A e^{\frac{1+\sqrt{5}}{2} t}+B e^{\frac{1-\sqrt{5}}{2} t} .
$$

(b) $6 y^{\prime \prime}-7 y^{\prime}+2 y=0$

Solution: We rewrite as

$$
y^{\prime \prime}-\frac{7}{6} y^{\prime}+\frac{1}{3} y=0
$$

Thus, we have

$$
r^{2}-\frac{7}{6} r+\frac{1}{3}=0
$$

Using the quadratic formula, we find $r=\frac{\frac{7}{6} \pm \frac{1}{6}}{2}$. Thus, we have

$$
y=A e^{\frac{2}{3} t}+B e^{\frac{1}{2} t}
$$

(c) An ODE whose auxilary equation is

$$
(r-1) r(r+1)(r+2)=0
$$

Solution: We easily obtain the roots $r=1,0,-1,-2$. Thus,

$$
y=A+B e^{t}+C e^{-t}+D e^{-2 t}
$$

4. Solve the following ODE

$$
\left\{\begin{array}{l}
y^{\prime \prime}-3 y^{\prime}-28 y=0 \\
y(0)=3 \\
y^{\prime}(0)-1
\end{array}\right.
$$

Solution: We have that $r^{2}-3 r-28=0$. Thus, we have

$$
(r-7)(r+4)=0 \Longrightarrow r=7,-4
$$

Thus, we have

$$
y=A e^{7 t}+B e^{-4 t}
$$

To use both initial conditions, we must also find y^{\prime}. Thus, we have that

$$
y=7 A e^{7 t}-4 B e^{-4 t}
$$

Using $y(0)=3$ and $y^{\prime}(0)=1$, we find

$$
y(0)=A+B=3 \Longrightarrow A=3-B
$$

and

$$
y^{\prime}(0)=7 A-4 B=7(3-B)-4 B=-1 \Longrightarrow B=2
$$

Thus, we have that $A=1$ and $B=2$. Our solution is written as

$$
y=e^{7 t}+2 e^{-4 t}
$$

