APMA 0350 - HOMEWORK 5

Problem 1: (2 points) Find the general solution of an ODE whose auxiliary equation is

$$
5 r^{2}(r+4)^{3}(r+7)\left(r^{2}+9\right)^{3}\left(r^{2}+2 r+10\right)^{2}=0
$$

Problem 2: (5 points) Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y^{\prime}(0) & =0 \\
y(3) & =0
\end{aligned}\right.
$$

Note: I recommend reviewing the "Mixed Example" in the lecture notes, although this is slightly different. Remember that $\omega>0$. That should help you figure out if you start with $m=0$ or $m=1$.

Problem 3: (4 points) Use undetermined coefficients to solve

$$
\left\{\begin{array}{c}
y^{\prime \prime}-5 y^{\prime}+4 y=20 \cos (2 t)+30 \sin (2 t) \\
y(0)=1 \\
y^{\prime}(0)=3
\end{array}\right.
$$

Problem 4: (2 points, 0.5 point each)
Guess the form of the particular solution (see the section "Who's that Particular Solution?" in the lecture notes)
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=e^{t}$
(b) $y^{\prime \prime}-3 y^{\prime}+2 y=t^{2} e^{2 t}$ (TURN PAGE)
(c) $y^{\prime \prime}-2 y^{\prime}+5 y=\sin (2 t)$
(d) $y^{\prime \prime}-2 y^{\prime}+5 y=e^{t} \cos (2 t)$

Problem 5: $(4=2+2$ points, Mini Theory) Use the differential operators method (the one with $D y=y^{\prime}$) to solve the following ODE
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=e^{t}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 t}$

Notice how there is no guesswork involved here, which is what makes this method so nice $)^{-}$

Note: Here is a video solving part (b)
Video: Cool Inhomogeneous Equations

Problem 6: (3 points, Application)

Suppose an object of mass $m=2$ is attached to a spring with constant $k=1$. Moreover assume there is damping $\gamma=2$ due to friction, and no forcing term. Assuming the initial displacement is 5 and the initial velocity is 3 , solve for the displacement $y(t)$ and describe in your own words what happens to the motion of the spring.

