LECTURE: BOUNDARY-VALUE PROBLEMS

1. Motivation

Here is some motivation in what's to follow
Example 1:
Consider $y^{\prime \prime}-5 y^{\prime}+6 y=0$
Aux: $r^{2}-5 r+6=0 \Rightarrow r=2$ or $r=3$
In the example below, the roots 2 and 3 are called the eigenvalues:
Eigenvalues: $\lambda=2$ and $\lambda=3$
The general solution is

$$
y=A e^{2 t}+B e^{3 t}
$$

Notice: Starting from $e^{2 t}$ and $e^{3 t}$ and using only addition and multiplication, we can get the general solution $y=A e^{2 t}+B e^{3 t}$

In the example below, the "building blocks" $e^{2 t}$ and $e^{3 t}$ are called the eigenfunctions:

Eigenfunctions: $y=e^{2 t}$ and $y=e^{3 t}$
We "ignore" the constants because for us, there is no difference between the building blocks $e^{2 t}$ and $e^{3 t}$ and the solution $y=A e^{2 t}+B e^{3 t}$ we
can easily go from one to the other. In Linear Algebra, this is called a "basis" of solutions.
2. Boundary-Value Problems (continued)

Video: Boundary-Value Problems

Example 2: (continued)

Find the values of λ for which the ODE has nonzero solutions

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y(0) & =0 \\
y(\pi) & =0
\end{aligned}\right.
$$

Auxiliary Equation: $r^{2}=\lambda$
Cases $1+2: \lambda>0$ and $\lambda=0$
No nonzero solutions
Case 3: $\lambda<0$
In this case $\lambda=-\omega^{2}$ where $\omega>0$
Ex: $\lambda=-9=-3^{2}$ so $\omega=3$
Aux: $r^{2}=\lambda=-\omega^{2} \Rightarrow r= \pm \omega i$

$$
\begin{gathered}
y(t)=A \cos (\omega t)+B \sin (\omega t) \\
y(0)=A \cos (0)+B \sin (0)=A=0
\end{gathered}
$$

$$
y(t)=B \sin (\omega t)
$$

$$
\begin{aligned}
y(\pi) & =0 \\
B \sin (\omega \pi) & =0 \quad B \neq 0 \text { because otherwise } y=0 \sin (\omega t)=0 \\
\sin (\omega \pi) & =0 \\
\omega \pi & =\pi m \\
\omega & =m
\end{aligned}
$$

Here m can be any integer, but since $\omega>0, m$ needs to be any positive integer, $m=1,2,3, \cdots$

Then $\lambda=-\omega^{2}=-m^{2}=-1,-4,-9, \cdots$
Moreover, from the above, we get $y=B \sin (\omega t)=B \sin (m t)$

Epic Conclusion:

Eigenvalues: $\lambda=-m^{2}(m=1,2, \cdots)=-1,-4,-9, \cdots$

Eigenfunctions:

$$
y=\sin (m t)(m=1,2, \cdots)=\sin (t), \sin (2 t), \sin (3 t), \cdots
$$

Note: Compare this from before where we had $\lambda=2,3$ and $y=e^{2 t}, e^{3 t}$ it's an infinite version of the previous example

Note: This is called eigenvalue/eigenfunction by comparison with $A \mathbf{v}=\lambda \mathbf{v}$ from linear algebra. Here we have $y^{\prime \prime}=\lambda y$

3. Derivative Example

Video: Derivative Example

Example 3:

Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y^{\prime}(0) & =0 \\
y^{\prime}(1) & =0
\end{aligned}\right.
$$

Auxiliary Equation: $r^{2}=\lambda$

Case 1: $\lambda>0$
Then $r^{2}=\lambda=\omega^{2} \Rightarrow r= \pm \omega$, in which case we get

$$
\begin{aligned}
& y(t)=A e^{\omega t}+B e^{-\omega t} \\
& y^{\prime}(t)=A \omega e^{\omega t}-B \omega e^{-\omega t} \\
& y^{\prime}(0)=A \omega-B \omega=0 \Rightarrow A \omega=B \omega \Rightarrow A=B \\
& y(t)=A e^{\omega t}+A e^{-\omega t} \\
& y^{\prime}(1)=0 \\
& A \omega e^{\omega}-A \omega e^{-\omega}=0 \\
& A \omega e^{\omega}=A \omega e^{-\omega} \\
& e^{\omega}=e^{-\omega} \\
& \omega=-\omega \\
& \omega=0
\end{aligned}
$$

But then $\lambda=\omega^{2}=0^{2}=0$ which contradicts $\lambda>0 \Rightarrow \Leftarrow$
Conclusion: In this case, we have no nonzero solutions
Case 2: $\lambda=0$

Aux: $r^{2}=0 \Rightarrow r=0$ (repeated twice)

$$
\begin{gathered}
y(t)=A+B t \\
y^{\prime}(t)=B \\
y^{\prime}(0)=0 \Rightarrow B=0 \\
y(t)=A+0 t=A=A \times 1
\end{gathered}
$$

But then in this case $y^{\prime}(1)=0$ is automatically satisfied.
Conclusion: $\lambda=0$ is an eigenvalue with eigenfunction $y(t)=1$
Case 3: $\lambda<0$
In this case $\lambda=-\omega^{2}$ where $\omega>0$
Aux: $r^{2}=\lambda=-\omega^{2} \Rightarrow r= \pm \omega i$

$$
\begin{gathered}
y(t)=A \cos (\omega t)+B \sin (\omega t) \\
y^{\prime}(t)=-A \omega \sin (\omega t)+B \omega \cos (\omega t) \\
y^{\prime}(0)=-A \omega \sin (0)+B \omega \cos (0)=B \omega=0 \Rightarrow B=0
\end{gathered}
$$

$$
\begin{aligned}
y(t) & =A \cos (\omega t) \\
y^{\prime}(1) & =0 \\
\Rightarrow A \bar{\omega} \sin (\omega 1) & =0 \\
\sin (\omega) & =0 \\
\omega & =\pi m \quad m=1,2, \cdots
\end{aligned}
$$

Here again m starts at 1 since we have $\omega>0$
In that case $\lambda=-\omega^{2}=-(\pi m)^{2}$ and $y=\cos (\omega t)=\cos (\pi m t)$
Note: If you let $m=0$ then $\lambda=-(\pi 0)^{2}=0$ and $y=\cos (\pi 0 t)=$ $\cos (0)=1$, which includes the previous step!

Epic Conclusion:

Eigenvalues: $\lambda=-(\pi m)^{2}(m=0,1,2, \cdots)=0,-\pi^{2},-4 \pi^{2} \cdots$ Eigenfunctions:

$$
y=\cos (\pi m t)(m=0,1,2, \cdots)=1, \cos (\pi t), \cos (2 \pi t), \cdots
$$

4. "Mixed" Example

Example 4: (extra practice)

Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y(0) & =0 \\
y^{\prime}\left(\frac{\pi}{2}\right) & =0
\end{aligned}\right.
$$

Auxiliary Equation: $r^{2}=\lambda$
Case 1: $\lambda>0$
Then $r^{2}=\lambda=\omega^{2}$ and so $r= \pm \omega$

$$
\begin{gathered}
y(t)=A e^{\omega t}+B e^{-\omega t} \\
y(0)=A+B=0 \Rightarrow B=-A \\
y(t)=A e^{\omega t}-A e^{-\omega t} \\
y^{\prime}(t)=A \omega e^{\omega t}-A(-\omega) e^{-\omega t} \\
y^{\prime}\left(\frac{\pi}{2}\right)=0 \\
A \omega e^{\frac{\pi \omega}{2}}+A \omega e^{-\frac{\pi \omega}{2}}=0 \\
A \omega e^{\frac{\pi \omega}{2}}=-A \omega e^{\frac{\pi \omega}{2}} \\
\underbrace{e^{\frac{\pi \omega}{2}}}_{>0}=\underbrace{-\frac{\pi \omega}{2}}_{<0}
\end{gathered}
$$

Which is a contradiction $\Rightarrow \Leftarrow$
Conclusion: In this case, we have no nonzero solutions
Case 2: $\lambda=0$
Aux: $r^{2}=0 \Rightarrow r=0$ (repeated twice)

$$
\begin{gathered}
y(t)=A+B t \\
y(0)=0 \Rightarrow A=0 \\
y(t)=B t
\end{gathered}
$$

$$
\begin{gathered}
y^{\prime}(t)=B \\
y^{\prime}\left(\frac{\pi}{2}\right)=0 \Rightarrow B=0
\end{gathered}
$$

But then in this case $y=0 \Rightarrow \Leftarrow$
Conclusion: In this case, we have no nonzero solutions
Case 3: $\lambda<0$
In this case $\lambda=-\omega^{2}$ where $\omega>0$
Aux: $r^{2}=\lambda=-\omega^{2} \Rightarrow r= \pm \omega i$

$$
\begin{gathered}
y(t)=A \cos (\omega t)+B \sin (\omega t) \\
y(0)=A=0 \\
y(t)=B \sin (\omega t) \\
y^{\prime}(t)=\omega B \cos (\omega t) \\
y^{\prime}\left(\frac{\pi}{2}\right)=0 \\
\omega B \cos \left(\frac{\pi \omega}{2}\right)=0 \\
\cos \left(\frac{\pi \omega}{2}\right)=0 \\
\frac{\pi \omega}{2}=\frac{\pi}{2}+\pi m \\
\omega=1+2 m \\
\lambda=-\omega^{2}=-(2 m+1)^{2}=-1,-9,-25, \cdots
\end{gathered}
$$

$$
\text { And } y(t)=B \sin (\omega t)=B \sin ((2 m+1) t)
$$

Epic Conclusion:

Eigenvalues:

$$
\lambda=-\omega^{2}=-(2 m+1)^{2}(m=0,1,2, \cdots)=-1,-9,-25, \cdots
$$

Eigenfunctions:

$$
y=\sin ((2 m+1) t)(m=0,1,2 \cdots)=\sin (t), \sin (3 t), \sin (5 t), \cdots
$$

5. Inhomogeneous Equations

What if the right-hand-side of our ODE is nonzero?

Example 5: (Model Problem)

$$
y^{\prime \prime}-5 y^{\prime}+6 y=6 e^{4 t}
$$

STEP 1: Homogeneous Solution

Solve the homogeneous equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$

$$
y_{0}(t)=A e^{2 t}+B e^{3 t}
$$

STEP 2: Particular Solution

Find one solution of the original equation $y^{\prime \prime}-5 y^{\prime}+6 y=6 e^{4 t}$
See next time, the result will be: $y_{p}(t)=3 e^{4 t}$

STEP 3: Answer:

Fact:

$$
\text { The general solution is } y=y_{0}+y_{p}
$$

$$
y=A e^{2 t}+B e^{3 t}+3 e^{4 t}
$$

Why this works?

On the one hand, can check that $y_{0}+y_{p}$ is a sol. of $y^{\prime \prime}-5 y^{\prime}+6 y=3 e^{4 t}$
On the other hand, given y and y_{p}, if you define $y_{0}=y-y_{p}$ then can check that y_{0} solves $y^{\prime \prime}-5 y^{\prime}+6 y=0$, so y_{0} is indeed a homogeneous solution, and $y_{0}=y-y_{p} \Rightarrow y=y_{0}+y_{p}$

Take-Away: To solve inhomogeneous equations, you first solve the homogeneous equation and then you find one solution of the original equation.

How to find y_{p} ? We will discuss two methods. The first one is easier to apply but only works in special cases (see next time)

