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ODE CLASSIFICATION

• Linear or Nonlinear?

• If the dependent variable (top of the differential) is not of the form, 𝛼𝛼𝑦𝑦𝑛𝑛, where n = 0,1, 𝛼𝛼 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, then the equation is nonlinear

• Homogeneity

• If all terms contain the dependent variable, the equation is homogenous.

• Autonomous

• Can be written in the form, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑦𝑦

• Separable

• Can be written in the form, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑦𝑦 𝑔𝑔(𝑡𝑡)



EXISTENCE AND UNIQUENESS

Consider the ODE
𝑦𝑦′ = 𝑓𝑓 𝑦𝑦, 𝑡𝑡
𝑦𝑦 𝑡𝑡0 = 𝑦𝑦0

where 𝑦𝑦0 is given. 

 If 𝑓𝑓 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

are continuous, then the ODE has a unique solution 𝑦𝑦 = 𝑦𝑦(𝑡𝑡) for 𝑡𝑡
close enough to 𝑡𝑡0.



SOLVING SEPARABLE EQUATIONS

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔 𝑦𝑦 𝑓𝑓(𝑥𝑥)

1. Identify g(y) and f(x)

2. Get like-terms to the same side and set up integrals

3. Solve the integrals

4. Combine the arbitrary constants, c

5. Using I.C, solve for C

6. Solve for y(x) (if possible)



EXAMPLE

𝑥𝑥 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑘𝑘𝑥𝑥2𝑦𝑦 = 𝑥𝑥2, Separate and find the general solution, assuming 𝑘𝑘 ≠ 0

• Rewrite as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 + 𝑘𝑘𝑘𝑘 𝑥𝑥

• 𝑑𝑑𝑑𝑑
(1+𝑘𝑘𝑘𝑘)

= 𝑥𝑥𝑥𝑥𝑥𝑥

• 1
𝑘𝑘

ln 1 + 𝑘𝑘𝑘𝑘 = 𝑥𝑥2

2
+ 𝑐𝑐

• ln 1 + 𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑥𝑥2

2
+ 𝑘𝑘𝑘𝑘

• 1 + 𝑘𝑘𝑘𝑘 = 𝑒𝑒𝑘𝑘𝑘𝑘 ∗ 𝑒𝑒
𝑘𝑘𝑥𝑥2

2

• 𝑦𝑦 = 𝐶𝐶𝑒𝑒
𝑘𝑘𝑥𝑥2

2 − 1
𝑘𝑘



SOLVING LINEAR FIRST-ORDER 
EQUATIONS

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑃𝑃 𝑥𝑥 𝑦𝑦 + 𝑄𝑄 𝑥𝑥

1. Write in standard form (𝑦𝑦′ + 𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑄𝑄(𝑥𝑥))

2. Find the integrating factor, 𝜌𝜌 𝑥𝑥 = 𝑒𝑒∫ 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑

3. Find ∫ 𝜌𝜌 𝑥𝑥 𝑄𝑄 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝑐𝑐

4. Divide step 4, by 𝜌𝜌 𝑥𝑥 to get: 𝑦𝑦 = ∫ 𝜌𝜌 𝑥𝑥 𝑄𝑄 𝑥𝑥 𝑑𝑑𝑑𝑑+𝑐𝑐
𝜌𝜌 𝑥𝑥

5. Find c from I.C



EXAMPLE

𝑥𝑥𝑦𝑦′ = −2𝑦𝑦 + 3𝑥𝑥

1. 𝑦𝑦′ + 2
𝑥𝑥
𝑦𝑦 = 3

2. 𝜌𝜌 𝑥𝑥 = exp ∫𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑 = 2 exp ln 𝑥𝑥 = 𝑥𝑥2

3. ∫𝜌𝜌 𝑥𝑥 𝑄𝑄(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 3𝑥𝑥2 𝑑𝑑𝑑𝑑 = 𝑥𝑥3 + 𝐶𝐶

4. 𝑦𝑦 𝑥𝑥 = 𝑥𝑥3+𝐶𝐶
𝑃𝑃(𝑥𝑥)

= 𝑥𝑥 + 𝐶𝐶
𝑥𝑥2



SOLVING EXACT EQUATIONS

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑄𝑄𝑄𝑄𝑄𝑄 = 0
1. Write in the above standard form 

2. Check if the equation is exact (conservative)

• Verify 𝑄𝑄𝑥𝑥 = 𝑃𝑃𝑦𝑦

3. Find 𝑓𝑓 such that ∇𝑓𝑓 = 𝑃𝑃,𝑄𝑄
• Find 𝑓𝑓 = ∫𝑃𝑃 𝑑𝑑𝑑𝑑 and 𝑓𝑓 = ∫𝑄𝑄 𝑑𝑑𝑑𝑑

• Pick constants of integration so that these are equal

4. The general solution is f x, y = C
5. Find C from initial conditions



EXAMPLE

• Determine if the following are exact. If so, solve the ODE.

1. 4𝑥𝑥𝑥𝑥 + 1 + 2𝑥𝑥2 + cos 𝑦𝑦 𝑦𝑦′ = 0

2. 3𝑥𝑥𝑥𝑥 + 𝑦𝑦2 + 𝑥𝑥2 + 𝑥𝑥𝑥𝑥 𝑦𝑦′ = 0



SOLUTION

1. 4𝑥𝑥𝑥𝑥 + 1 + 2𝑥𝑥2 + cos 𝑦𝑦 𝑦𝑦′ = 0 = 4𝑥𝑥𝑥𝑥 + 1 𝑑𝑑𝑑𝑑 + 2𝑥𝑥2 + cos 𝑦𝑦 𝑑𝑑𝑑𝑑
• 𝑃𝑃 = 4𝑥𝑥𝑥𝑥 + 1, 𝑄𝑄 = 2𝑥𝑥2 + cos(𝑦𝑦)

• 𝑃𝑃𝑦𝑦 = 𝑄𝑄𝑥𝑥 ⇒Exact ODE

• 𝑓𝑓 = ∫𝑃𝑃 𝑑𝑑𝑑𝑑 = 2𝑥𝑥2𝑦𝑦 + 𝑥𝑥 + 𝑔𝑔(𝑦𝑦)

• 𝑓𝑓 = ∫𝑄𝑄 𝑑𝑑𝑑𝑑 = 2𝑥𝑥2𝑦𝑦 + sin 𝑦𝑦 + ℎ(𝑥𝑥)

• ⇒ f x, y = 2x2y + x + sin(y)

• General solution is 2𝑥𝑥2𝑦𝑦 + 𝑥𝑥 + sin 𝑦𝑦 = 𝑐𝑐

2. 3𝑥𝑥𝑥𝑥 + 𝑦𝑦2 + 𝑥𝑥2 + 𝑥𝑥𝑥𝑥 𝑦𝑦′ = 0 = 3𝑥𝑥𝑥𝑥 + 𝑦𝑦2 𝑑𝑑𝑑𝑑 + 𝑥𝑥2 + 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
• 𝑃𝑃 = 3𝑥𝑥𝑥𝑥 + 𝑦𝑦2, 𝑄𝑄 = 𝑥𝑥2 + 𝑥𝑥𝑥𝑥

• 𝑃𝑃𝑦𝑦 ≠ 𝑄𝑄𝑥𝑥 ⇒ not exact 



APPLICATION: NEWTONS LAW OF 
COOLING

This describes how an object will cool in environment with a constant ambient temperature.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘 𝑇𝑇 − 𝑇𝑇0

• 𝑇𝑇0 is the ambient temperature, 𝑇𝑇 is the temperature.

• General Solution*

• 𝑇𝑇 𝑡𝑡 = 𝑇𝑇0 + 𝑇𝑇ℎ𝑜𝑜𝑜𝑜 − 𝑇𝑇0 𝑒𝑒−𝑘𝑘𝑘𝑘

• *I would not recommend memorizing this as the type of questions being asked around this application 
don’t require it.



APPLICATION: MIXTURE PROBLEM

• Variables are:
• 𝑟𝑟𝐼𝐼 and 𝑟𝑟𝑜𝑜 , the rates of liquid in and out the chamber (units of vol/time).

• If these rates are equal, we call this a steady-state flow

• If 𝑟𝑟𝐼𝐼 > 𝑟𝑟𝑜𝑜 , this is called start-up, since the volume in the chamber is increasing

• If 𝑟𝑟𝐼𝐼 < 𝑟𝑟𝑜𝑜 , this is called shutdown, since the volume in the chamber is decreasing.

• 𝑐𝑐𝐼𝐼 is the concentration of the solute going in (units of mass/vol)

• 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 is the concentration of the solute going out.

• We used the “mixed well” assumption to say that the concentration in the chamber is uniform, which means the concertation going out of the 
chamber will be equivalent to the concentration of the chamber overall.

• As an equation; 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

= 𝑥𝑥
𝑉𝑉

• V is the volume of fluid in the chamber

• t is the independent variable of time

• x(t) is the mass of solute (dependent var)

By using compartment modeling we can derive an equation to model how the mass of solute changes in time
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑐𝑐𝐼𝐼𝑟𝑟𝐼𝐼 − 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 = 𝑐𝑐𝐼𝐼𝑟𝑟𝐼𝐼 −
𝑥𝑥
𝑉𝑉
𝑟𝑟𝑜𝑜

Where, 𝑉𝑉 = 𝑉𝑉𝑜𝑜 + 𝑟𝑟𝐼𝐼 − 𝑟𝑟𝑜𝑜 𝑡𝑡
With this information, you can plug in the known values and solve as a normal linear first-order equation.

𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼



POPULATION MODELS AND LOGISTIC 
GROWTH

• The idea behind population models is to model how the size of a population changes over time. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• This idea lead to three different models for populations covered in lecture

• Exponential Model

• This assumes there’s no intraspecies interaction.

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= kP ⇒ 𝑃𝑃 = 𝑃𝑃0𝑒𝑒𝑘𝑘𝑘𝑘

• k is the rate of change of the population (births – deaths)

• The solution is just an exponential (hence the name)



EXPONENTIAL MODEL AND LOGISTIC MODEL

• Exponential Model with Harvesting 

• This assumes there’s no intraspecies interaction.

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= kP − r

• k is the natural rate of change of the population

• r is a constant harvesting rate 

• The solution is just an exponential but the sign of the exponent depends on 𝑃𝑃0

• Logistic Model

• Take the interspecies interaction to be dependent on the population size (carry capacity)

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 1 − 𝑃𝑃
𝐶𝐶

• k is the same as above

• 𝐶𝐶 is the carrying capacity

• The solution is a sigmoid (logistic).



LOGISTIC 
GROWTH 
EXAMPLE

• Note you will need to use partial 
fraction decomposition:

1
𝑥𝑥 + 1 𝑥𝑥 + 2 =

𝐴𝐴
𝑥𝑥 + 1 +

𝐵𝐵
𝑥𝑥 + 2

𝐴𝐴 𝑥𝑥 + 2 + 𝐵𝐵 𝑥𝑥 + 1 = 1

Then group like terms and then 
solve the system

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0𝑥𝑥 ⇒ 𝐴𝐴 + 𝐵𝐵 = 0
2𝐴𝐴 + 𝐵𝐵 = 1

Therefore, A=1,B=-1



LOGISTIC 
GROWTH 
EXAMPLE

• Note you will need to use partial 
fraction decomposition:

1
𝑥𝑥 + 1 𝑥𝑥 + 2 =

𝐴𝐴
𝑥𝑥 + 1 +

𝐵𝐵
𝑥𝑥 + 2

𝐴𝐴 𝑥𝑥 + 2 + 𝐵𝐵 𝑥𝑥 + 1 = 1

Then group like terms and then 
solve the system

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0𝑥𝑥 ⇒ 𝐴𝐴 + 𝐵𝐵 = 0
2𝐴𝐴 + 𝐵𝐵 = 1

Therefore, A=1,B=-1



CRITICAL POINTS

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑥𝑥

• The equation above is the general form for a linear first-order ODE. 

• Finding the critical points, 𝑥𝑥𝑐𝑐
• Critical points are defined as the roots of f(x).

1. Finding the Stability

• Partition the domain with critical points as the boundaries.

• At each critical point, see how the sign of f(x) changes. This sign change tells you the 
stability

• + to – means it is stable

• - to + means it is unstable

• Same sign means it is semi stable. + to + means it is stable from below, - to -
means it is stable from above

• You can represent these signs in either a phase-line or bifurcation diagram

• Alternative method: Derivative test (not recommended)

• If 𝑓𝑓𝑓(𝑥𝑥𝑐𝑐) < 0, it is stable.      >0, is unstable,       = 0, use another method



LINEAR SECOND-ORDER ODES WITH 
CONSTANT COEFFICIENTS

𝛼𝛼
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝛽𝛽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝛾𝛾𝛾𝛾 = 𝐹𝐹(𝑡𝑡)

• Linear 

• The independent variable is not being raised to a power greater than 1, or being run through a function

• Second-order

• The highest derivative order is 2

• Ordinary 

• There is only a 1 variable dependence 

• This is opposed to PDES, Partial differential equations, where there are partial derivatives since the dependent 
variable varies based off 2 or more variables

• Constant Coefficients

• The coefficients of each of the LHS terms is constant



SOLVING THE HOMOGENEOUS CASE

𝑎𝑎𝑦𝑦′′ + 𝑏𝑏𝑦𝑦′ + 𝑐𝑐𝑐𝑐 = 0

1. Find the characteristic equation

• This will be in the form of;  𝑎𝑎𝑟𝑟2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

• Replace each “y” with a “rn,” where “n” is the order of the “y” term

2. Potential Cases (𝑟𝑟1, 𝑟𝑟2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
1. 𝑟𝑟1, 𝑟𝑟2 are real and distinct

• Solution takes the form of 𝑦𝑦 𝑥𝑥 = 𝐶𝐶1𝑒𝑒𝑟𝑟1𝑥𝑥 + 𝐶𝐶2𝑒𝑒𝑟𝑟2𝑥𝑥

2. 𝑟𝑟1, 𝑟𝑟2 are real and repeated

• Solution takes the form of 𝑦𝑦 𝑥𝑥 = 𝐶𝐶1𝑒𝑒𝑟𝑟1𝑥𝑥 + 𝐶𝐶2𝑥𝑥𝑒𝑒𝑟𝑟2𝑥𝑥

3. 𝑟𝑟1, 𝑟𝑟2 are complex

• Solution takes the form of 𝑦𝑦 𝑥𝑥 = 𝑒𝑒𝛼𝛼𝛼𝛼 𝐶𝐶1 cos 𝛽𝛽𝛽𝛽 + 𝐶𝐶2 sin 𝛽𝛽𝛽𝛽

• Where 𝛼𝛼 is the real part of your root, and 𝛽𝛽 is the coefficient of the imaginary 
part of your root (where 𝛽𝛽 ≥ 0)

3. Plug in ICs and solve for arbitrary constants



EXAMPLE

𝑦𝑦′′ − 4𝑦𝑦′ − 5𝑦𝑦 = 0,𝑦𝑦 0 = 5,𝑦𝑦′ 0 = 1

1. Obtain Characteristic Equation and Find Roots

• 𝑟𝑟2 − 4r − 5 -> r = 1,-5

2. Identify the case

• 2 real and distinct roots implies the exponential case

• Write the general solution

• 𝑦𝑦 = 𝐶𝐶1𝑒𝑒−𝑥𝑥 + 𝐶𝐶2𝑒𝑒5𝑥𝑥

• Plug in I.Cs and solve for constants

• 𝑦𝑦 = 𝐶𝐶1𝑒𝑒−𝑥𝑥 + 𝐶𝐶2𝑒𝑒5𝑥𝑥

• 𝑦𝑦′ = −𝐶𝐶1𝑒𝑒−𝑥𝑥 + 5𝐶𝐶2𝑒𝑒5𝑥𝑥

• 5 = 𝐶𝐶1 + 𝐶𝐶2 & 1 = −C1 + 5C2
• Therefore 𝐶𝐶1 = 4,𝐶𝐶2 = 1

• 𝑦𝑦 𝑥𝑥 = 4𝑒𝑒−𝑥𝑥 + 𝑒𝑒5𝑥𝑥



EXAMPLE

𝑦𝑦′′ − 2𝑦𝑦′ + 2𝑦𝑦 = 0,𝑦𝑦 0 = 1,𝑦𝑦′ 0 = 0

1. Obtain Characteristic Equation and Find Roots

• 𝑟𝑟2 − 2r + 2 -> r = 2± 4−8
2

= 1 ± 𝑖𝑖

2. Identify the case

• Complex roots implies the sinusoidal case with exponential amplitude (Case 3)

• Write the general solution

• 𝑦𝑦 𝑥𝑥 = 𝑒𝑒𝑥𝑥(𝐶𝐶1 cos 𝑥𝑥 + 𝐶𝐶2 sin 𝑥𝑥 )

• Plug in I.Cs and solve for constants

• 𝑦𝑦 = 𝑒𝑒𝑥𝑥(𝐶𝐶1 cos 𝑥𝑥 + 𝐶𝐶2 sin 𝑥𝑥 )

• 𝑦𝑦′ = 𝑒𝑒𝑥𝑥 −𝐶𝐶1 sin 𝑥𝑥 + 𝐶𝐶2 cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥(𝐶𝐶1 cos 𝑥𝑥 + 𝐶𝐶2 sin 𝑥𝑥 )

• 1 = 𝐶𝐶1 & 0 = C2 + C1
• Therefore 𝐶𝐶1 = 1,𝐶𝐶1 = −1

• 𝑦𝑦 𝑥𝑥 = 𝑒𝑒𝑥𝑥(cos 𝑥𝑥 − sin 𝑥𝑥 )



PRACTICE

1. 𝑦𝑦′′ + 2𝑦𝑦′ + 𝑦𝑦 = 0, 𝑦𝑦 0 = 5, 𝑦𝑦′ 0 = −3

2. 𝑦𝑦′′ + 6𝑦𝑦′ + 10𝑦𝑦 = 0,𝑦𝑦 0 = 4 , 𝑦𝑦′ 0 = −5



SOLUTION



NUMERICAL SCHEMES: EULER’S METHOD

• Forward Euler (Order 1)

• Uses tangent line at x0 to approximate 

• Recursive update rule:
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ 𝑓𝑓(𝑦𝑦𝑛𝑛, 𝑡𝑡𝑛𝑛)

• ℎ = 𝑏𝑏−𝑎𝑎
𝑁𝑁

is the step size, where 𝑁𝑁 is the total number of steps

• Some notes

• You need to pick a sufficiently small ℎ for this to be a good approximation

• The error order is 𝒪𝒪(𝐶𝐶𝐶), which means the accuracy of the method scales inversely 
with the step size
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