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ODE CLASSIFICATION

• Linear or Nonlinear?

• If the dependent variable (top of the differential) is not of the form, 𝛼𝛼𝑦𝑦𝑛𝑛, where n = 0,1, 𝛼𝛼 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, then the equation is nonlinear

• Homogeneity

• If all terms contain the dependent variable, the equation is homogenous.

• Autonomous

• Can be written in the form, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑦𝑦

• Separable

• Can be written in the form, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑦𝑦 𝑔𝑔(𝑐𝑐)



EXISTENCE AND UNIQUENESS

Consider the ODE
𝑦𝑦′ = 𝑓𝑓 𝑦𝑦, 𝑐𝑐
𝑦𝑦 𝑐𝑐0 = 𝑦𝑦0

where 𝑦𝑦0 is given. 

 If 𝑓𝑓 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

are continuous, then the ODE has a unique solution 𝑦𝑦 = 𝑦𝑦(𝑐𝑐) for 𝑐𝑐
close enough to 𝑐𝑐0.



SOLVING SEPARABLE EQUATIONS

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑔𝑔 𝑦𝑦 𝑓𝑓(𝑑𝑑)

1. Identify g(y) and f(x)

2. Get like-terms to the same side and set up integrals

3. Solve the integrals

4. Combine the arbitrary constants, c

5. Using I.C, solve for C

6. Solve for y(x) (if possible)



EXAMPLE

𝑑𝑑 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑘𝑘𝑑𝑑2𝑦𝑦 = 𝑑𝑑2, Separate and find the general solution, assuming 𝑘𝑘 ≠ 0

• Rewrite as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 + 𝑘𝑘𝑦𝑦 𝑑𝑑

• 𝑑𝑑𝑑𝑑
(1+𝑘𝑘𝑑𝑑)

= 𝑑𝑑𝑑𝑑𝑑𝑑

• 1
𝑘𝑘

ln 1 + 𝑘𝑘𝑦𝑦 = 𝑑𝑑2

2
+ 𝑐𝑐

• ln 1 + 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝑑𝑑2

2
+ 𝑘𝑘𝑘𝑘

• 1 + 𝑘𝑘𝑦𝑦 = 𝑒𝑒𝑘𝑘𝑘𝑘 ∗ 𝑒𝑒
𝑘𝑘𝑥𝑥2

2

• 𝑦𝑦 = 𝑘𝑘𝑒𝑒
𝑘𝑘𝑥𝑥2

2 − 1
𝑘𝑘



SOLVING LINEAR FIRST-ORDER 
EQUATIONS

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑃𝑃 𝑑𝑑 𝑦𝑦 + 𝑄𝑄 𝑑𝑑

1. Write in standard form (𝑦𝑦′ + 𝑃𝑃 𝑑𝑑 𝑦𝑦 = 𝑄𝑄(𝑑𝑑))

2. Find the integrating factor, 𝜌𝜌 𝑑𝑑 = 𝑒𝑒∫ 𝑃𝑃 𝑑𝑑 𝑑𝑑𝑑𝑑

3. Find ∫ 𝜌𝜌 𝑑𝑑 𝑄𝑄 𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑐𝑐

4. Divide step 4, by 𝜌𝜌 𝑑𝑑 to get: 𝑦𝑦 = ∫ 𝜌𝜌 𝑑𝑑 𝑄𝑄 𝑑𝑑 𝑑𝑑𝑑𝑑+𝑐𝑐
𝜌𝜌 𝑑𝑑

5. Find c from I.C



EXAMPLE

𝑑𝑑𝑦𝑦′ = −2𝑦𝑦 + 3𝑑𝑑

1. 𝑦𝑦′ + 2
𝑑𝑑
𝑦𝑦 = 3

2. 𝜌𝜌 𝑑𝑑 = exp ∫𝑃𝑃 𝑑𝑑 𝑑𝑑𝑑𝑑 = 2 exp ln 𝑑𝑑 = 𝑑𝑑2

3. ∫𝜌𝜌 𝑑𝑑 𝑄𝑄(𝑑𝑑)𝑑𝑑𝑑𝑑 = ∫ 3𝑑𝑑2 𝑑𝑑𝑑𝑑 = 𝑑𝑑3 + 𝑘𝑘

4. 𝑦𝑦 𝑑𝑑 = 𝑑𝑑3+𝑘𝑘
𝑃𝑃(𝑑𝑑)

= 𝑑𝑑 + 𝑘𝑘
𝑑𝑑2



SOLVING EXACT EQUATIONS

𝑃𝑃𝑑𝑑𝑑𝑑 + 𝑄𝑄𝑑𝑑𝑦𝑦 = 0
1. Write in the above standard form 

2. Check if the equation is exact (conservative)

• Verify 𝑄𝑄𝑑𝑑 = 𝑃𝑃𝑑𝑑

3. Find 𝑓𝑓 such that ∇𝑓𝑓 = 𝑃𝑃,𝑄𝑄
• Find 𝑓𝑓 = ∫𝑃𝑃 𝑑𝑑𝑑𝑑 and 𝑓𝑓 = ∫𝑄𝑄 𝑑𝑑𝑦𝑦

• Pick constants of integration so that these are equal

4. The general solution is f x, y = C
5. Find C from initial conditions



EXAMPLE

• Determine if the following are exact. If so, solve the ODE.

1. 4𝑑𝑑𝑦𝑦 + 1 + 2𝑑𝑑2 + cos 𝑦𝑦 𝑦𝑦′ = 0

2. 3𝑑𝑑𝑦𝑦 + 𝑦𝑦2 + 𝑑𝑑2 + 𝑑𝑑𝑦𝑦 𝑦𝑦′ = 0



SOLUTION

1. 4𝑑𝑑𝑦𝑦 + 1 + 2𝑑𝑑2 + cos 𝑦𝑦 𝑦𝑦′ = 0 = 4𝑑𝑑𝑦𝑦 + 1 𝑑𝑑𝑑𝑑 + 2𝑑𝑑2 + cos 𝑦𝑦 𝑑𝑑𝑦𝑦
• 𝑃𝑃 = 4𝑑𝑑𝑦𝑦 + 1, 𝑄𝑄 = 2𝑑𝑑2 + cos(𝑦𝑦)

• 𝑃𝑃𝑑𝑑 = 𝑄𝑄𝑑𝑑 ⇒Exact ODE

• 𝑓𝑓 = ∫𝑃𝑃 𝑑𝑑𝑑𝑑 = 2𝑑𝑑2𝑦𝑦 + 𝑑𝑑 + 𝑔𝑔(𝑦𝑦)

• 𝑓𝑓 = ∫𝑄𝑄 𝑑𝑑𝑦𝑦 = 2𝑑𝑑2𝑦𝑦 + sin 𝑦𝑦 + ℎ(𝑑𝑑)

• ⇒ f x, y = 2x2y + x + sin(y)

• General solution is 2𝑑𝑑2𝑦𝑦 + 𝑑𝑑 + sin 𝑦𝑦 = 𝑐𝑐

2. 3𝑑𝑑𝑦𝑦 + 𝑦𝑦2 + 𝑑𝑑2 + 𝑑𝑑𝑦𝑦 𝑦𝑦′ = 0 = 3𝑑𝑑𝑦𝑦 + 𝑦𝑦2 𝑑𝑑𝑑𝑑 + 𝑑𝑑2 + 𝑑𝑑𝑦𝑦 𝑑𝑑𝑦𝑦
• 𝑃𝑃 = 3𝑑𝑑𝑦𝑦 + 𝑦𝑦2, 𝑄𝑄 = 𝑑𝑑2 + 𝑑𝑑𝑦𝑦

• 𝑃𝑃𝑑𝑑 ≠ 𝑄𝑄𝑑𝑑 ⇒ not exact 



APPLICATION: NEWTONS LAW OF 
COOLING

This describes how an object will cool in environment with a constant ambient temperature.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑐𝑐

= −𝑘𝑘 𝑑𝑑 − 𝑑𝑑0

• 𝑑𝑑0 is the ambient temperature, 𝑑𝑑 is the temperature.

• General Solution*

• 𝑑𝑑 𝑐𝑐 = 𝑑𝑑0 + 𝑑𝑑ℎ𝑜𝑜𝑑𝑑 − 𝑑𝑑0 𝑒𝑒−𝑘𝑘𝑑𝑑

• *I would not recommend memorizing this as the type of questions being asked around this application 
don’t require it.



APPLICATION: MIXTURE PROBLEM

• Variables are:
• 𝑟𝑟𝐼𝐼 and 𝑟𝑟𝑜𝑜 , the rates of liquid in and out the chamber (units of vol/time).

• If these rates are equal, we call this a steady-state flow

• If 𝑟𝑟𝐼𝐼 > 𝑟𝑟𝑜𝑜 , this is called start-up, since the volume in the chamber is increasing

• If 𝑟𝑟𝐼𝐼 < 𝑟𝑟𝑜𝑜 , this is called shutdown, since the volume in the chamber is decreasing.

• 𝑐𝑐𝐼𝐼 is the concentration of the solute going in (units of mass/vol)

• 𝑐𝑐𝑜𝑜𝑜𝑜𝑑𝑑 is the concentration of the solute going out.

• We used the “mixed well” assumption to say that the concentration in the chamber is uniform, which means the concertation going out of the 
chamber will be equivalent to the concentration of the chamber overall.

• As an equation; 𝑐𝑐𝑜𝑜𝑜𝑜𝑑𝑑 = 𝑑𝑑𝑜𝑜𝑑𝑑𝑡𝑡𝑡𝑡 𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚 𝑜𝑜𝜕𝜕 𝑚𝑚𝑜𝑜𝑡𝑡𝑜𝑜𝑑𝑑𝑠𝑠
𝑑𝑑𝑜𝑜𝑑𝑑𝑡𝑡𝑡𝑡 𝑣𝑣𝑜𝑜𝑡𝑡𝑜𝑜𝑚𝑚𝑠𝑠

= 𝑑𝑑
𝑉𝑉

• V is the volume of fluid in the chamber

• t is the independent variable of time

• x(t) is the mass of solute (dependent var)

By using compartment modeling we can derive an equation to model how the mass of solute changes in time
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒 𝑖𝑖𝑐𝑐 − 𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒 𝑂𝑂𝑆𝑆𝑐𝑐 = 𝑐𝑐𝐼𝐼𝑟𝑟𝐼𝐼 − 𝑐𝑐𝑜𝑜𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜 = 𝑐𝑐𝐼𝐼𝑟𝑟𝐼𝐼 −
𝑑𝑑
𝑉𝑉
𝑟𝑟𝑜𝑜

Where, 𝑉𝑉 = 𝑉𝑉𝑜𝑜 + 𝑟𝑟𝐼𝐼 − 𝑟𝑟𝑜𝑜 𝑐𝑐
With this information, you can plug in the known values and solve as a normal linear first-order equation.

𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼



POPULATION MODELS AND LOGISTIC 
GROWTH

• The idea behind population models is to model how the size of a population changes over time. 
𝑑𝑑𝑃𝑃
𝑑𝑑𝑐𝑐

= 𝑟𝑟𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑓𝑓 𝑏𝑏𝑖𝑖𝑟𝑟𝑐𝑐ℎ𝑐𝑐 − 𝑟𝑟𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑓𝑓 𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐ℎ𝑐𝑐

• This idea lead to three different models for populations covered in lecture

• Exponential Model

• This assumes there’s no intraspecies interaction.

• 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= kP ⇒ 𝑃𝑃 = 𝑃𝑃0𝑒𝑒𝑘𝑘𝑑𝑑

• k is the rate of change of the population (births – deaths)

• The solution is just an exponential (hence the name)



EXPONENTIAL MODEL AND LOGISTIC MODEL

• Exponential Model with Harvesting 

• This assumes there’s no intraspecies interaction.

• 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= kP − r

• k is the natural rate of change of the population

• r is a constant harvesting rate 

• The solution is just an exponential but the sign of the exponent depends on 𝑃𝑃0

• Logistic Model

• Take the interspecies interaction to be dependent on the population size (carry capacity)

• 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑃𝑃 1 − 𝑃𝑃
𝑘𝑘

• k is the same as above

• 𝑘𝑘 is the carrying capacity

• The solution is a sigmoid (logistic).



LOGISTIC 
GROWTH 
EXAMPLE

• Note you will need to use partial 
fraction decomposition:

1
𝑑𝑑 + 1 𝑑𝑑 + 2 =

𝐴𝐴
𝑑𝑑 + 1 +

𝐵𝐵
𝑑𝑑 + 2

𝐴𝐴 𝑑𝑑 + 2 + 𝐵𝐵 𝑑𝑑 + 1 = 1

Then group like terms and then 
solve the system

𝐴𝐴𝑑𝑑 + 𝐵𝐵𝑑𝑑 = 0𝑑𝑑 ⇒ 𝐴𝐴 + 𝐵𝐵 = 0
2𝐴𝐴 + 𝐵𝐵 = 1

Therefore, A=1,B=-1



LOGISTIC 
GROWTH 
EXAMPLE

• Note you will need to use partial 
fraction decomposition:

1
𝑑𝑑 + 1 𝑑𝑑 + 2 =

𝐴𝐴
𝑑𝑑 + 1 +

𝐵𝐵
𝑑𝑑 + 2

𝐴𝐴 𝑑𝑑 + 2 + 𝐵𝐵 𝑑𝑑 + 1 = 1

Then group like terms and then 
solve the system

𝐴𝐴𝑑𝑑 + 𝐵𝐵𝑑𝑑 = 0𝑑𝑑 ⇒ 𝐴𝐴 + 𝐵𝐵 = 0
2𝐴𝐴 + 𝐵𝐵 = 1

Therefore, A=1,B=-1



CRITICAL POINTS

𝑑𝑑𝑑𝑑
𝑑𝑑𝑐𝑐

= 𝑓𝑓 𝑑𝑑

• The equation above is the general form for a linear first-order ODE. 

• Finding the critical points, 𝑑𝑑𝑐𝑐
• Critical points are defined as the roots of f(x).

1. Finding the Stability

• Partition the domain with critical points as the boundaries.

• At each critical point, see how the sign of f(x) changes. This sign change tells you the 
stability

• + to – means it is stable

• - to + means it is unstable

• Same sign means it is semi stable. + to + means it is stable from below, - to -
means it is stable from above

• You can represent these signs in either a phase-line or bifurcation diagram

• Alternative method: Derivative test (not recommended)

• If 𝑓𝑓𝑓(𝑑𝑑𝑐𝑐) < 0, it is stable.      >0, is unstable,       = 0, use another method



LINEAR SECOND-ORDER ODES WITH 
CONSTANT COEFFICIENTS

𝛼𝛼
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑐𝑐2

+ 𝛽𝛽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑐𝑐

+ 𝛾𝛾𝑑𝑑 = 𝐹𝐹(𝑐𝑐)

• Linear 

• The independent variable is not being raised to a power greater than 1, or being run through a function

• Second-order

• The highest derivative order is 2

• Ordinary 

• There is only a 1 variable dependence 

• This is opposed to PDES, Partial differential equations, where there are partial derivatives since the dependent 
variable varies based off 2 or more variables

• Constant Coefficients

• The coefficients of each of the LHS terms is constant



SOLVING THE HOMOGENEOUS CASE

𝑐𝑐𝑦𝑦′′ + 𝑏𝑏𝑦𝑦′ + 𝑐𝑐𝑦𝑦 = 0

1. Find the characteristic equation

• This will be in the form of;  𝑐𝑐𝑟𝑟2 + 𝑏𝑏𝑟𝑟 + 𝑐𝑐 = 0

• Replace each “y” with a “rn,” where “n” is the order of the “y” term

2. Potential Cases (𝑟𝑟1, 𝑟𝑟2 𝑐𝑐𝑟𝑟𝑒𝑒 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑓𝑓 𝑐𝑐ℎ𝑒𝑒 𝑐𝑐ℎ𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 𝑒𝑒𝑒𝑒𝑆𝑆𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐)
1. 𝑟𝑟1, 𝑟𝑟2 are real and distinct

• Solution takes the form of 𝑦𝑦 𝑑𝑑 = 𝑘𝑘1𝑒𝑒𝑟𝑟1𝑑𝑑 + 𝑘𝑘2𝑒𝑒𝑟𝑟2𝑑𝑑

2. 𝑟𝑟1, 𝑟𝑟2 are real and repeated

• Solution takes the form of 𝑦𝑦 𝑑𝑑 = 𝑘𝑘1𝑒𝑒𝑟𝑟1𝑑𝑑 + 𝑘𝑘2𝑑𝑑𝑒𝑒𝑟𝑟2𝑑𝑑

3. 𝑟𝑟1, 𝑟𝑟2 are complex

• Solution takes the form of 𝑦𝑦 𝑑𝑑 = 𝑒𝑒𝛼𝛼𝑑𝑑 𝑘𝑘1 cos 𝛽𝛽𝑑𝑑 + 𝑘𝑘2 sin 𝛽𝛽𝑑𝑑

• Where 𝛼𝛼 is the real part of your root, and 𝛽𝛽 is the coefficient of the imaginary 
part of your root (where 𝛽𝛽 ≥ 0)

3. Plug in ICs and solve for arbitrary constants



EXAMPLE

𝑦𝑦′′ − 4𝑦𝑦′ − 5𝑦𝑦 = 0,𝑦𝑦 0 = 5,𝑦𝑦′ 0 = 1

1. Obtain Characteristic Equation and Find Roots

• 𝑟𝑟2 − 4r − 5 -> r = 1,-5

2. Identify the case

• 2 real and distinct roots implies the exponential case

• Write the general solution

• 𝑦𝑦 = 𝑘𝑘1𝑒𝑒−𝑑𝑑 + 𝑘𝑘2𝑒𝑒5𝑑𝑑

• Plug in I.Cs and solve for constants

• 𝑦𝑦 = 𝑘𝑘1𝑒𝑒−𝑑𝑑 + 𝑘𝑘2𝑒𝑒5𝑑𝑑

• 𝑦𝑦′ = −𝑘𝑘1𝑒𝑒−𝑑𝑑 + 5𝑘𝑘2𝑒𝑒5𝑑𝑑

• 5 = 𝑘𝑘1 + 𝑘𝑘2 & 1 = −C1 + 5C2
• Therefore 𝑘𝑘1 = 4,𝑘𝑘2 = 1

• 𝑦𝑦 𝑑𝑑 = 4𝑒𝑒−𝑑𝑑 + 𝑒𝑒5𝑑𝑑



EXAMPLE

𝑦𝑦′′ − 2𝑦𝑦′ + 2𝑦𝑦 = 0,𝑦𝑦 0 = 1,𝑦𝑦′ 0 = 0

1. Obtain Characteristic Equation and Find Roots

• 𝑟𝑟2 − 2r + 2 -> r = 2± 4−8
2

= 1 ± 𝑖𝑖

2. Identify the case

• Complex roots implies the sinusoidal case with exponential amplitude (Case 3)

• Write the general solution

• 𝑦𝑦 𝑑𝑑 = 𝑒𝑒𝑑𝑑(𝑘𝑘1 cos 𝑑𝑑 + 𝑘𝑘2 sin 𝑑𝑑 )

• Plug in I.Cs and solve for constants

• 𝑦𝑦 = 𝑒𝑒𝑑𝑑(𝑘𝑘1 cos 𝑑𝑑 + 𝑘𝑘2 sin 𝑑𝑑 )

• 𝑦𝑦′ = 𝑒𝑒𝑑𝑑 −𝑘𝑘1 sin 𝑑𝑑 + 𝑘𝑘2 cos 𝑑𝑑 + 𝑒𝑒𝑑𝑑(𝑘𝑘1 cos 𝑑𝑑 + 𝑘𝑘2 sin 𝑑𝑑 )

• 1 = 𝑘𝑘1 & 0 = C2 + C1
• Therefore 𝑘𝑘1 = 1,𝑘𝑘1 = −1

• 𝑦𝑦 𝑑𝑑 = 𝑒𝑒𝑑𝑑(cos 𝑑𝑑 − sin 𝑑𝑑 )



PRACTICE

1. 𝑦𝑦′′ + 2𝑦𝑦′ + 𝑦𝑦 = 0, 𝑦𝑦 0 = 5, 𝑦𝑦′ 0 = −3

2. 𝑦𝑦′′ + 6𝑦𝑦′ + 10𝑦𝑦 = 0,𝑦𝑦 0 = 4 , 𝑦𝑦′ 0 = −5



SOLUTION



NUMERICAL SCHEMES: EULER’S METHOD

• Forward Euler (Order 1)

• Uses tangent line at x0 to approximate 

• Recursive update rule:
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ 𝑓𝑓(𝑦𝑦𝑛𝑛, 𝑐𝑐𝑛𝑛)

• ℎ = 𝑏𝑏−𝑡𝑡
𝑁𝑁

is the step size, where 𝑁𝑁 is the total number of steps

• Some notes

• You need to pick a sufficiently small ℎ for this to be a good approximation

• The error order is 𝒪𝒪(𝑘𝑘ℎ), which means the accuracy of the method scales inversely 
with the step size
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