APMA 0350 - PROGRAMMING ASSIGNMENT 1

Problem 1: (4 points)

Use the dfield app to draw the direction field of

$$
y^{\prime}=y(y+3)
$$

On that direction field, please click on three solutions, one in the region $y>0$, one in the region $-3<y<0$, and one in the region $y<-3$.

Note: Don't forget about the \star otherwise you get an error message. Please take a screenshot of your direction field with your 3 curves and include it in your assignment.

Using Python:

To use Python, first go to the Jupyter Website, then click on "Try it in your Browser," then on the "Jupyter Lab" icon on the left. To open a notebook, click on File $>$ New $>$ Notebook. In the problems below, please take a screenshot of your code and your result, and include it in your assignment.

Problem 2: (4 points) Use Python to apply Euler's Method with $N=50$ on [2,3] where

$$
\left\{\begin{aligned}
y^{\prime} & =\cos (y)+t y \\
y(2) & =5
\end{aligned}\right.
$$

No need to print the (t, y) values but please plot the points on a graph.

Problem 3: (12 points, 4 points each) Use the dsolve command in Python to solve the following. Don't solve them by hand.
(a)

$$
y^{\prime}+y=3 \cos (2 t)
$$

(b)

$$
\left\{\begin{aligned}
y^{\prime}+2 y & =2 t e^{2 t} \\
y(0) & =1
\end{aligned}\right.
$$

Note: Python uses $\exp (2 * t)$ for exponential functions
(c)

$$
\left\{\begin{aligned}
y^{\prime} & =20 y\left(1-\frac{y}{20}\right) \\
y(0) & =10
\end{aligned}\right.
$$

Please also plot the solution in (c), using -5 and 5 as the t limits and -1 and 21 as the y limits.

