APMA 0350 - Programming Assignment Solutions

February 26, 2024

1. Use the dfield app to draw the direction field of

$$
y^{\prime}=y(y+3)
$$

On that direction field, please click on three solutions, one in the region $y>0$, one in the region $-3<y<0$, and one in the region $y<-3$.

Solution:

2. Use Python to apply Euler's Method with $N=50$ on $[2,3]$ where

$$
\left\{\begin{array}{l}
y^{\prime}=\cos (y)+t y \\
y(2)=5
\end{array}\right.
$$

No need to print the (t, y) values but please plot the points on a graph.

```
Solution:
    import numpy as np
    from matplotlib import pyplot as plt
#Initial condition values
t0 = 2
y0 = 5
#Final value of interval you are solving over
tf = 3
#Stepsize = deltat
n = 50
deltat = (tf - t0)/n
#Time and y variable arrays
t = np.linspace(t0,tf,n)
y = np.zeros([n])
#Initial condition
y[0] = y0
#Method calculation
for i in range(1,n):
        y[i] = deltat*(np.cos(y[i-1]) + (y[i-1]*t[i-1])) + y[i-1]
#Printing results - not necessary for your homework
for i in range(n):
    print(t[i], y[i])
#Plotting
plt.plot(t,y,'o')
plt.xlabel('Value of t')
plt.ylabel('Value of y')
plt.title("APMA 0350 - Forward Euler's Method")
plt.show()
```


3. Use the dsolve command in Python to solve the following. Don't solve them by hand.
(a)

$$
y^{\prime}+y=3 \cos (2 t)
$$

Solution:

```
#Problem 3
from sympy import *
t = symbols('t')
y = Function('y')
deq = diff(y(t),t) + y(t) - 3*\operatorname{cos}(2*t)
ysoln = dsolve(deq,y(t))
print(ysoln)
Eq(y(t),C1*exp(-t) + 6*sin(2*t)/5 + 3*\operatorname{cos}(2*t)/5)
```

(b)

$$
\left\{\begin{array}{l}
y^{\prime}+2 y=2 t e^{2 t} \\
y(0)=1
\end{array}\right.
$$

Solution:

Problem 3 - Using dsolve on function in b)

```
#PROBLEM 2#
t=symbols('t')
y=Function('y')
deq=diff(y(t),t)+2*y(t)-2*t*exp(2*t)
ysoln=dsolve(deq,y(t),ics={y(0):1})
print('Solution is',ysoln)
```

Solution is $\mathrm{Eq}\left(\mathrm{y}(\mathrm{t}),\left(\left(4^{*} \mathrm{t}-1\right)^{*} \exp \left(4^{*} \mathrm{t}\right) / 8+9 / 8\right)^{*} \exp \left(-2^{*} \mathrm{t}\right)\right)$
(c)

$$
\left\{\begin{array}{l}
y^{\prime}=20 y\left(1-\frac{y}{20}\right) \\
y(0)=10
\end{array}\right.
$$

Please also plot the solution in (c), using -5 and 5 as the t limits and -1 and 21 as the y limits.

Solution:

Problem 3 - Using dsolve on function in c)

```
t=symbols('t')
y=Function('y')
deq=diff(y(t),t) - 20*y(t)*(1-y(t)/20)
ysoln=dsolve(deq,y(t),ics={y(0):10})
plot(ysoln.rhs,(t, -5,5),ylim=[-1, 21])
```


