APMA 1650 - FINAL EXAM - SOLUTIONS

1. STEP 1: Let X be the number of occurrences of PEYAM
X has values $0,1,2$ and so
$E(X)=0 P(X=0)+1 P(X=1)+2 P(X=2)=P(X=1)+2 P(X=2)$
STEP 2: $P(X=1)$

Total: 26^{10} possibilities

Favorable: There are 6 places to put the string PEYAM and 26^{5} ways of filling the remaining 5 spots, so $6 \times 26^{5}-1$ favorable possibilities. We subtract 1 because of the case PEYAMPEYAM

$$
P(X=1)=\frac{6 \times 26^{5}-1}{26^{10}}
$$

STEP 3: $P(X=2)$

Since the only possibility is the string PEYAMPEYAM

$$
P(X=2)=\frac{1}{26^{10}}
$$

STEP 4: Answer:

$$
E(X)=P(X=1)+2 P(X=2)=\left(\frac{6 \times 26^{5}-1}{26^{10}}\right)+2\left(\frac{1}{26^{10}}\right)=\frac{6 \times 26^{5}+1}{26^{10}}
$$

2. STEP 1: Let X be the number of months in which the company sends out >1 birthday email

Let X_{i} be the following indicator variable
$X_{i}= \begin{cases}1 & \text { if the company sends out }>1 \text { email in month } i \\ 0 & \text { otherwise }\end{cases}$
Then $X=X_{1}+\cdots+X_{12}$ and so

$$
E(X)=E\left(X_{1}+\cdots+X_{12}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{12}\right)
$$

Moreover, for each i we have

$$
E\left(X_{i}\right)=0 P\left(X_{i}=0\right)+1 P\left(X_{i}=1\right)=P\left(X_{i}=1\right)
$$

STEP 2: $P\left(X_{i}=1\right)$

By the complement rule, we have

$$
\begin{aligned}
P\left(X_{i}=1\right) & =1-P(\text { the company sends out } \leq 1 \text { email in month } i) \\
& =1-(P(0 \text { emails })+P(1 \text { email }))
\end{aligned}
$$

We can model this with Binom (n, p) where $n=50$ employees and $p=\frac{1}{12}$ (birthday in month i) hence

$$
\begin{aligned}
P\left(X_{i}=1\right) & =1-\left(\binom{50}{0}\left(\frac{1}{12}\right)^{0}\left(\frac{11}{12}\right)^{50}+\binom{50}{1}\left(\frac{1}{12}\right)^{1}\left(\frac{11}{12}\right)^{49}\right) \\
& =1-\left(\frac{11}{12}\right)^{50}-50\left(\frac{1}{12}\right)\left(\frac{11}{12}\right)^{49}
\end{aligned}
$$

STEP 3: Answer:

Notice $E\left(X_{i}\right)=P\left(X_{i}=1\right)$ doesn't depend on i and so

$$
E(X)=12 E\left(X_{i}\right)=12\left(1-\left(\frac{11}{12}\right)^{50}-50\left(\frac{1}{12}\right)\left(\frac{11}{12}\right)^{49}\right)
$$

3. STEP 1: By definition of C we have

$$
C=10+2 Y
$$

Therefore:
$E(C)=E(10+2 Y)=E(10)+2 E(Y)=10+2(3)=16$
$\operatorname{Var}(C)=\operatorname{Var}(10+2 Y)=\operatorname{Var}(2 Y)=2^{2} \operatorname{Var}(Y)=4(2)=8$
STEP 2: By Chebyshev's Inequality, we have

$$
P(|C-E(C)| \geq a) \leq \frac{\operatorname{Var}(C)}{a^{2}} \Rightarrow P(|C-16| \geq a) \leq \frac{8}{a^{2}}
$$

We want the right-hand-side to be ≤ 0.08 and so it is enough to choose a such that

$$
\frac{8}{a^{2}} \leq 0.08 \Rightarrow \frac{1}{a^{2}} \leq \frac{0.08}{8}=0.01 \Rightarrow a^{2} \geq \frac{1}{0.01}=100 \Rightarrow a \geq 10
$$

STEP 3: Answer

Therefore our interval is

$$
|C-16|<10 \Rightarrow-10<C-16<10 \Rightarrow 6<C<26
$$

So the desired interval is $(6,26)$
4. (a) The triangle can be written as $0 \leq y \leq 1-x$ with $0 \leq x \leq 1$ The area of the triangle is $\frac{1}{2} \times 1 \times 1=\frac{1}{2}$ and therefore $f(x, y)= \begin{cases}2 & \text { if } 0 \leq y \leq 1-x \text { and } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
(b)

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1-x}(x y) 2 d y d x
$$

$$
=\int_{0}^{1} x\left(\int_{0}^{1-x} 2 y d y\right) d x
$$

$$
=\int_{0}^{1} x\left[y^{2}\right]_{y=0}^{y=1-x} d x
$$

$$
=\int_{0}^{1} x(1-x)^{2} d x
$$

$$
=\int_{0}^{1} x-2 x^{2}+x^{3} d x
$$

$$
=\left[\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+\frac{1}{4} x^{4}\right]_{0}^{1}
$$

$$
=\frac{1}{2}-\frac{2}{3}+\frac{1}{4}
$$

$$
=\frac{3}{4}-\frac{2}{3}
$$

$$
=\frac{9-8}{12}
$$

$$
=\frac{1}{12}
$$

$$
f_{X}(x)=\int_{0}^{1-x} f(x, y) d y=\int_{0}^{1-x} 2 d y=2(1-x)
$$

$$
E(X)=\int_{0}^{1} x(2(1-x)) d x=\int_{0}^{1} 2 x-2 x^{2} d x=\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=1-\frac{2}{3}=\frac{1}{3}
$$

$$
\begin{gathered}
f_{Y}(y)=\int_{0}^{1-y} f(x, y) d y=\int_{0}^{1-y} 2 d x=2(1-y) \\
E(Y)=\int_{0}^{1} y(2(1-y)) d y=\frac{1}{3}
\end{gathered}
$$

$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\left(\frac{1}{12}\right)-\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)=\frac{1}{12}-\frac{1}{9}=\frac{3-4}{36}=-\frac{1}{36}$
(c) Because $\operatorname{Cov}(X, Y) \neq 0, X$ and Y are not independent
5. (a) Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$ and $\bar{Y}=\frac{Y_{1}+\cdots+Y_{m}}{m}$ then

$$
\begin{aligned}
E(\bar{X}) & =E\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right)=\frac{1}{n}\left(E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right) \\
& =\frac{1}{n}(\lambda+\cdots+\lambda) \quad \text { Because } X_{i} \sim \operatorname{Poi}(\lambda) \\
& =\frac{1}{n}(n \lambda)=\lambda
\end{aligned}
$$

Similarly $E(\bar{Y})=\lambda$
Hence $E(\hat{\lambda})=E(a \bar{X}+b \bar{Y})=a E(\bar{X})+b E(\bar{Y})=a \lambda+b \lambda=(a+b) \lambda$
In order for $\hat{\lambda}$ to be unbiased for λ we need $E(\hat{\lambda})=\lambda$ and so $(a+b) \lambda=\lambda$ and therefore we need

$$
a+b=1
$$

(b) Because $\hat{\lambda}$ is unbiased, we have

$$
\operatorname{MSE}(\hat{\lambda})=[\operatorname{Bias}(\hat{\lambda})]^{2}+\operatorname{Var}(\hat{\lambda})=\operatorname{Var}(\hat{\lambda})
$$

$$
\operatorname{Var} \begin{aligned}
(\bar{X}) & =\operatorname{Var}\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right)=\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right) \\
& =\frac{1}{n^{2}}(\lambda+\cdots+\lambda) \quad \text { Because } X_{i} \sim \operatorname{Poi}(\lambda) \\
& =\frac{1}{n^{2}}(n \lambda)=\frac{\lambda}{n}
\end{aligned}
$$

Similarly $\operatorname{Var}(\bar{Y})=\frac{\lambda}{m}$
Hence $\operatorname{Var}(\hat{\lambda})=\operatorname{Var}(a \bar{X}+b \bar{Y})=a^{2} \operatorname{Var}(\bar{X})+b^{2} \operatorname{Var}(\bar{Y})=a^{2}\left(\frac{\lambda}{n}\right)+b^{2}\left(\frac{\lambda}{m}\right)$
And therefore we get

$$
\operatorname{MSE}(\hat{\lambda})=\left(\frac{a^{2}}{n}+\frac{b^{2}}{m}\right) \lambda
$$

(c) From (b) with $m=n$ we have

$$
\operatorname{Var}(\hat{\lambda})=\left(\frac{a^{2}}{n}+\frac{b^{2}}{n}\right) \lambda=\frac{1}{n}\left(a^{2}+b^{2}\right) \lambda
$$

Since $\hat{\lambda}$ is unbiased and $\lim _{n \rightarrow \infty} \operatorname{Var}(\hat{\lambda}) \rightarrow 0$ we get $\hat{\lambda}$ is consistent for λ
6. STEP 1: Since the sample size is small, we have to use the t-distribution, and so the 90% confidence interval is

$$
[\hat{L}, \hat{U}]=\left[\bar{Y}-t_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right), \bar{Y}+t_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right)\right]
$$

The length of that confidence interval is

$$
\left(\bar{Y}+t_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right)\right)-\left(\bar{Y}-t_{\alpha / 2}\left(\frac{S}{\sqrt{n}}\right)\right)=2\left(t_{\alpha / 2}\right)\left(\frac{S}{\sqrt{n}}\right)
$$

STEP 2: Plug in the values:

$$
1-\alpha=0.9 \Rightarrow \alpha=0.1 \Rightarrow \alpha / 2=0.05
$$

We use the Student's t-distribution with $n-1=15 \mathrm{df}$ and $p=0.05$ to get $t_{\alpha / 2}=2$

Therefore we get

$$
2\left(t_{\alpha / 2}\right)\left(\frac{S}{\sqrt{n}}\right)<4 \Rightarrow 4\left(\frac{S}{\sqrt{16}}\right)<4 \Rightarrow S<4
$$

Therefore the largest sample standard deviation is $S=4$

7. STEP 1: Likelihood Function

$$
\begin{aligned}
L\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid p\right) & =p\left(Y_{1}\right) p\left(Y_{2}\right) \cdots p\left(Y_{n}\right) \\
& =\binom{m}{Y_{1}} p^{Y_{1}}(1-p)^{m-Y_{1}} \cdots\binom{m}{n} p^{Y_{n}}(1-p)^{m-Y_{n}} \\
& =\left[\binom{m}{Y_{1}} \cdots\binom{m}{Y_{n}}\right] p^{Y_{1}+\cdots+Y_{n}}(1-p)^{(m+\cdots+m)-\left(Y_{1}+\cdots+Y_{n}\right)} \\
& =C p^{n \bar{Y}}(1-p)^{m n-n \bar{Y}} \quad \text { where } C=\binom{m}{Y_{1}} \cdots\binom{m}{Y_{n}} \\
& =C p^{n \bar{Y}}(1-p)^{n(m-\bar{Y})}
\end{aligned}
$$

STEP 2: Logarithms

$\ln \left(L\left(Y_{1}, \cdots, Y_{n} \mid p\right)\right)=\ln \left(C p^{n \bar{Y}}(1-p)^{n(m-\bar{Y})}\right)=\ln (C)+n \bar{Y} \ln (p)+n(m-\bar{Y}) \ln (1-p)$
STEP 3: Derivative

$$
\begin{aligned}
& \frac{d}{d p} L\left(Y_{1}, \cdots, Y_{n} \mid p\right)=\frac{d}{d p}(\ln (C)+n \bar{Y} \\
&\ln (p)+n(m-\bar{Y}) \ln (1-p)) \\
&=\frac{n \bar{Y}}{p}-\frac{n(m-\bar{Y})}{1-p}=0 \\
& \frac{x \bar{Y}}{p}-\frac{n(m-\bar{Y})}{1-p}=0 \\
& \bar{Y}=\frac{m-\bar{Y}}{1-p} \\
&(1-p) \bar{Y}=(m-\bar{Y}) p \\
& \bar{Y}-p \not \bar{Y}^{\prime}=m p-\bar{Y} / p \\
& p=\frac{\bar{Y}}{m}
\end{aligned}
$$

STEP 4: Answer: Therefore the MLE of p is

$$
\hat{p}=\frac{\bar{Y}}{m}
$$

8. (a) Parameter of interest: $\mu=$ mean age
(1) Alternative Hypothesis: $\mu<30$
(2) Null Hypothesis: $\mu=30$
(3) Test statistic: $\bar{Y}=28$
(4) Rejection Region: $\{\bar{Y} \leq k\}$
(b) Since we know $\sigma=5$ we get

$$
\hat{\sigma}=\frac{\sigma}{\sqrt{n}}=\frac{5}{\sqrt{100}}=\frac{5}{10}=0.5
$$

Since the sample size is large we convert to Z

$$
P(\bar{Y} \leq k)=0.05 \Rightarrow P\left(\frac{\bar{Y}-30}{\hat{\sigma}} \leq \frac{k-30}{0.5}\right)=0.05 \Rightarrow P\left(Z \leq \frac{k-30}{0.5}\right)=0.05
$$

From the problem we get $P(Z \leq-2)=0.05$ and so

$$
\frac{k-30}{0.5}=-2 \Rightarrow k=30+(0.5)(-2)=30-1=29
$$

Hence our rejection region is $\{\bar{Y} \leq 29\}$
Answer: Since the test statistic $\bar{Y}=28$ is in the rejection region, since $28 \leq 29$ we reject the null hypothesis, and so our claim is supported with a level of $\alpha=0.05$
(c) Here the observed value is $\bar{Y}=28$

$$
\begin{aligned}
p \text {-value } & =P(\bar{Y} \leq 28 \text { given Null is true }) \\
& =P(\bar{Y} \leq 28 \text { given } \mu=30) \\
& =P\left(\frac{\bar{Y}-28}{\hat{\sigma}} \leq \frac{28-30}{0.5}\right) \\
& =P(Z \leq-4)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\beta & =P(\bar{Y} \text { is outside RR when Alt is true }) \\
& =P(\bar{Y} \geq k) \text { given } \mu=26 \\
& =P(\bar{Y} \geq 29) \text { given } \mu=26 \\
& =P\left(\frac{\bar{Y}-26}{\hat{\sigma}} \geq \frac{29-26}{0.5}\right) \\
& =P(Z \geq 6)
\end{aligned}
$$

