APMA 1941G Homework 1

Lulabel Ruiz Seitz

January 26, 2024

Problem 1

Show that p^{1} and \boldsymbol{u}^{1} from the "acoustic approximation in fluid mechanics" in lecture satisfy the following PDE, where $c_{0} \doteq \sqrt{g^{\prime}\left(\rho^{0}\right)}$ and $\rho^{0} \neq 0$

$$
\left\{\begin{array}{l}
p_{t t}^{1}-c_{0}^{2} \Delta p^{1}=0 \\
\boldsymbol{u}_{t t}^{1}-c_{0}^{2} \nabla\left(\operatorname{div} \boldsymbol{u}^{1}\right)=0
\end{array}\right.
$$

Proof. First, recall from lecture that we found that

$$
\left\{\begin{array}{l}
\rho^{0} \boldsymbol{u}_{t}^{1}=-\nabla p^{1} \\
p^{1}=g^{\prime}\left(\rho^{0}\right) \rho^{1} \\
\rho_{t}^{1}+\rho^{0} \operatorname{div}\left(\boldsymbol{u}^{1}\right)=0
\end{array}\right.
$$

We will use these three identities derived in lecture to aid in showing that p^{1} and \boldsymbol{u}^{1} satisfy the system of PDEs. Differentiating (b) with respect to t, we find that

$$
p_{t}^{1}=g^{\prime}\left(\rho^{0}\right) \rho_{t}^{1}
$$

This is because ρ^{0} is constant, so $g^{\prime}\left(\rho^{0}\right)$ is a function evaluated at a constant and so is a constant (independent of t). Differentiating with respect to t again, we then obtain

$$
\begin{equation*}
p_{t t}^{1}=g^{\prime}\left(\rho^{0}\right) \rho_{t t}^{1} \tag{1}
\end{equation*}
$$

Using the definition of $c_{0}, 11$ becomes

$$
\begin{equation*}
p_{t t}^{1}=c_{0}^{2} \rho_{t t}^{1} \tag{2}
\end{equation*}
$$

Differentiating (c) with respect to t, we find that

$$
\rho_{t t}^{1}+\rho^{0} \operatorname{div}\left(\boldsymbol{u}_{t}^{1}\right)=0
$$

Since ρ^{0} is constant, we can pull it into the divergence operator, and we have

$$
\begin{equation*}
\rho_{t t}^{1}+\operatorname{div}\left(\rho^{0} \boldsymbol{u}_{t}^{1}\right)=0 \tag{3}
\end{equation*}
$$

Now substituting (a) into (3) and rearranging, we obtain

$$
\begin{equation*}
\rho_{t t}^{1}=\operatorname{div}\left(\nabla p^{1}\right) \tag{4}
\end{equation*}
$$

Substituting (4) into (2) and using the identity $\operatorname{div}\left(\nabla p^{1}\right)=\Delta p^{1}$, we have shown the first PDE, (i), is satisfied, i.e.

$$
p_{t t}^{1}-c_{0}^{2} \Delta p^{1}=0
$$

To show the second PDE, (ii), is satisfied, we first take the gradient of (c) to find that

$$
\begin{equation*}
\nabla \rho_{t}^{1}+\rho^{0} \nabla \operatorname{div}\left(\boldsymbol{u}^{1}\right)=0 \tag{5}
\end{equation*}
$$

again using that ρ^{0} is constant. Taking the time derivative of (b) gives that $g^{\prime}\left(\rho^{0}\right) \rho_{t}^{1}=p_{t}^{1}$. Using the definition of c_{0} and taking the gradient gives that $c_{0}^{2} \nabla \rho_{t}^{1}=\nabla p_{t}^{1}$. Substituting this into (5), we have

$$
\begin{equation*}
\frac{1}{c_{0}^{2}} \nabla p_{t}^{1}+\rho^{0} \nabla \operatorname{div}\left(\boldsymbol{u}^{1}\right)=0 \tag{6}
\end{equation*}
$$

Multiplying through by c_{0}^{2}, we obtain

$$
\begin{equation*}
\nabla p_{t}^{1}+c_{0}^{2} \rho^{0} \nabla \operatorname{div}\left(\boldsymbol{u}^{1}\right)=0 \tag{7}
\end{equation*}
$$

Taking the time derivative of (a), we have that $\nabla p_{t}^{1}=-\rho^{0} \boldsymbol{u}_{t t}^{1}$. Substituting this identity into (7),

$$
\begin{equation*}
-\rho^{0} \boldsymbol{u}_{t t}^{1}+c_{0}^{2} \rho^{0} \nabla \operatorname{div}\left(\boldsymbol{u}^{1}\right)=0 \tag{8}
\end{equation*}
$$

Dividing through by $-\rho^{0} \neq 0$, we have shown the second PDE, (ii), is satisfied, i.e.

$$
\boldsymbol{u}_{t t}^{1}-c_{0}^{2} \nabla\left(\operatorname{div} \boldsymbol{u}^{1}\right)=0
$$

Problem 2

Suppose $u_{0}=u_{0}(x)$ is a solution of

$$
\begin{equation*}
-u_{0}^{\prime \prime}(x)+V(x) u_{0}(x)=\lambda_{0} u_{0}(x) \tag{9}
\end{equation*}
$$

with $\lim _{|x| \rightarrow \infty} u_{0}(x)=0$ where $x \in \mathbb{R}, \lambda_{0} \in \mathbb{R}$ and $V(x)$ is given. Suppose we want to solve the following perturbation

$$
\begin{equation*}
-u_{\epsilon}^{\prime \prime}(x)+V(x) u_{\epsilon}(x)+\epsilon W(x) u_{\epsilon}(x)=\lambda_{\epsilon} u_{\epsilon}(x) \tag{10}
\end{equation*}
$$

with $\lim _{|x| \rightarrow \infty} u_{\epsilon}(x)=0$ where $W=W(x)$ is given.
2(a)
Expand u_{ϵ} and λ_{ϵ} out as

$$
\begin{aligned}
& u_{\epsilon}=u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots \\
& \lambda_{\epsilon}=\lambda_{0}+\epsilon \lambda_{1}+\epsilon^{2} \lambda_{2}+\ldots
\end{aligned}
$$

Plug this expansion into 10 and show that the $O\left(\epsilon^{k}\right)$-terms give you the following equation:

$$
\begin{equation*}
-u_{k}^{\prime \prime}+\left(V-\lambda_{0}\right) u_{k}=-W u_{k-1}+\sum_{j=1}^{k} \lambda_{j} u_{k-j} \tag{11}
\end{equation*}
$$

What do you get when you compare the $\mathrm{O}(1)$ terms?
Hint: the following formula might be useful:

$$
\left(\sum_{k=0}^{\infty} a_{k}\right)\left(\sum_{k=0}^{\infty} b_{k}\right)=\sum_{k=0}^{\infty} \sum_{j=0}^{k} a_{j} b_{k-j} .
$$

Proof. First, we plug in the expansion. We obtain

$$
\begin{equation*}
-u_{0}^{\prime \prime}-\epsilon u_{1}^{\prime \prime}-\epsilon^{2} u_{2}^{\prime \prime}-\ldots+V\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots\right)+\epsilon W\left(u_{0}+\epsilon u_{1}+\ldots\right)=\left(\lambda_{0}+\epsilon \lambda_{1}+\ldots\right)\left(u_{0}+\epsilon u_{1}+\ldots\right) \tag{12}
\end{equation*}
$$

Using the hint for the right hand side of $\sqrt{12}$, this becomes

$$
\left(\sum_{k=0}^{\infty} \epsilon^{k} \lambda_{k}\right)\left(\sum_{k=0}^{\infty} \epsilon^{k} u_{k}\right)=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \epsilon^{j} \lambda_{j} \epsilon^{k-j} u_{k-j}=\sum_{k=0}^{\infty} \epsilon^{k} \sum_{j=0}^{k} \lambda_{j} u_{k-j} .
$$

Now considering the $O(\epsilon)$ terms, we have

$$
-\epsilon u_{1}^{\prime \prime}+\epsilon V u_{1}=-\epsilon W u_{0}+\epsilon \sum_{j=0}^{1} \lambda_{j} u_{1-j}
$$

Dividing through by ϵ, we have

$$
-u_{1}^{\prime \prime}+V u_{1}=-W u_{0}+\lambda_{0} u_{1}+\lambda_{1} u_{0}
$$

or equivalently,

$$
\begin{equation*}
-u_{1}^{\prime \prime}+\left(V-\lambda_{0}\right) u_{1}=-W u_{0}+\lambda_{1} u_{0} . \tag{13}
\end{equation*}
$$

Directly analogously, we can see that comparing the $O\left(\epsilon^{2}\right)$ terms on each side yields

$$
-\epsilon^{2} u_{2}^{\prime \prime}+V \epsilon^{2} u_{2}+\epsilon^{2} W u_{1}=\epsilon^{2} \sum_{j=0}^{2} \lambda_{j} u_{2-j},
$$

which we can rearrange to obtain

$$
\begin{equation*}
-u_{2}^{\prime \prime}+V u_{2}=-W u_{1}+\sum_{j=1}^{2} \lambda_{j} u_{2-j} \tag{14}
\end{equation*}
$$

Since all of the rest of the cases may be done in an exactly analogous fashion, to obtain directly analogous equations to (13) and (14), we can iteratively see that an equation of the desired form holds for each $k=1,2, \ldots$
$\mathbf{O}(1)$ terms: Comparing these terms on each side, we obtain

$$
-u_{0}^{\prime \prime}-V u_{0}+\epsilon W u_{0}=\lambda_{0} u_{0},
$$

which is exactly the original equation (9) that u_{0} is a solution to.

2(b)

Let's look for solutions of the form

$$
u_{k}(x)=u_{0}(x) w_{k}(x)
$$

where w_{k} is to be found. Plug this into and multiply by u_{0} and obtain

$$
\begin{equation*}
\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime}=u_{0}^{2}\left(W w_{k-1}-\sum_{j=1}^{k} \lambda_{j} w_{k-j}\right) \tag{15}
\end{equation*}
$$

Solution. First plugging in, noting that $-u_{k}^{\prime}=-u_{0}^{\prime} w_{k}-u_{0} w_{k}^{\prime}$ and $-u_{k}^{\prime}=-u_{0}^{\prime \prime} w_{k}-2 u_{0}^{\prime} w_{k}^{\prime}-u_{0} w_{k}^{\prime \prime}$, we obtain

$$
-u_{0}^{\prime \prime} w_{k}-2 u_{0}^{\prime} w_{k}^{\prime}-u_{0} w_{k}^{\prime \prime}+\left(V-\lambda_{0}\right) u_{0} w_{k}=-W u_{0} w_{k-1}+\sum_{j=1}^{k} \lambda_{j} u_{0} w_{k-j}
$$

Multiplying through by u_{0} and collecting terms,

$$
\begin{equation*}
u_{0}\left(-u_{0}^{\prime \prime} w_{k}-2 u_{0}^{\prime} w_{k}^{\prime}-u_{0} w_{k}^{\prime \prime}+\left(V-\lambda_{0}\right) u_{0} w_{k}\right)=-u_{0}^{2}\left(W w_{k-1}-\sum_{j=1}^{k} \lambda_{j} w_{k-j}\right) \tag{16}
\end{equation*}
$$

Since u_{0} solves $-u_{0}^{\prime \prime}+V u_{0}=\lambda_{0} u_{0}, u_{0}\left(V-\lambda_{0}\right)=u_{0}^{\prime \prime}$. Substituting this into 16), this term and the term $-u_{0}^{\prime \prime} w_{k}$ sum to zero, so we then have

$$
\begin{equation*}
u_{0}\left(2 u_{0}^{\prime} w_{k}^{\prime}-u_{0} w_{k}^{\prime \prime}\right)=-u_{0}^{2}\left(W w_{k-1}-\sum_{j=1}^{k} \lambda_{j} w_{k-j}\right) \tag{17}
\end{equation*}
$$

Now we can notice that

$$
\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime}=2 u_{0} u_{0}^{\prime} w_{k}^{\prime}+u_{0}^{2} w_{k}^{\prime \prime}
$$

Using this identity in (17) and multiplying both sides by -1 , we have shown that

$$
\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime}=u_{0}^{2}\left(W w_{k-1}-\sum_{j=1}^{k} \lambda_{j} w_{k-j}\right)
$$

as required.

2(c)

Integrate 15 over \mathbb{R}, assuming that

$$
\begin{equation*}
u_{0}^{2}(x) w_{k}^{\prime}(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \tag{18}
\end{equation*}
$$

and solve for λ_{k} to obtain the recursive definition of λ_{k},

$$
\lambda_{k}=\frac{\int_{-\infty}^{\infty} u_{0}\left(W u_{k-1}-\sum_{j=1}^{k-1} \lambda_{j} u_{k-j}\right)}{\int_{-\infty}^{\infty} u_{0}^{2}}
$$

Solution. Integrating both sides of with respect to x, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime} d x=\int_{-\infty}^{\infty} u_{0}^{2}\left(W w_{k-1}-\lambda_{k} w_{0}-\sum_{j=1}^{k-1} \lambda_{j} w_{k-j}\right) d x \tag{19}
\end{equation*}
$$

First, we can see that the left-hand side is, for some arbitrary $a \in \mathbb{R}$ and using the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \int_{a}^{x}\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime}+\lim _{x \rightarrow-\infty} \int_{x}^{a}\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime} & =\lim _{x \rightarrow \infty}\left(u_{0}^{2} w_{k}^{\prime}\right)-u_{0}(a)^{2} w_{k}^{\prime}(a)+u_{0}^{2}(a) w_{k}^{\prime}(a)-\lim _{x \rightarrow-\infty}\left(u_{0}^{2} w_{k}^{\prime}\right) \\
& =\lim _{x \rightarrow \infty}\left(u_{0}^{2} w_{k}^{\prime}\right)-\lim _{x \rightarrow-\infty}\left(u_{0}^{2} w_{k}^{\prime}\right) \\
& =0 \text { by the assumption 18. }
\end{aligned}
$$

Thus (19) is now

$$
\begin{equation*}
0=\int_{-\infty}^{\infty} u_{0}^{2}\left(W w_{k-1}-\lambda_{k} w_{0}-\sum_{j=1}^{k-1} \lambda_{j} w_{k-j}\right) d x \tag{20}
\end{equation*}
$$

Since $w_{k-1}=u_{k-1} / u_{0}, 20$ becomes

$$
0=\int_{-\infty}^{\infty} u_{0}\left(W u_{k-1}-\sum_{j=1}^{k-1} \lambda_{j} u_{k-j}\right)-\int_{-\infty}^{\infty} \lambda_{k} u_{0}^{2}
$$

Since λ_{k} is constant (we can make this assumption from the problem statements given that $\lambda_{0} \in \mathbb{R}$ and none of the λ_{k} appear with arguments), we can pull this out of the integral and rearrange to get

$$
\lambda_{k}=\frac{\int_{-\infty}^{\infty} u_{0}\left(W u_{k-1}-\sum_{j=1}^{k-1} \lambda_{j} u_{k-j}\right)}{\int_{-\infty}^{\infty} u_{0}^{2}}
$$

as required.

2(d)

Integrate (15) over $(-\infty, t)$ for $t>0$, again assuming (18). Then integrate over $(-\infty, x)$ assuming $w_{k}(x)$ goes to zero at $-\infty$. Finally, use $u_{k}(x)=u_{0}(x) w_{k}(x)$ to conclude

$$
u_{k}(x)=u_{0}(x) \int_{-\infty}^{1} \frac{1}{u_{0}^{2}(t)} \int_{-\infty}^{t} u_{0}(s)\left(W(s) u_{k-1}(s)-\sum_{j=1}^{k} \lambda_{k} u_{k-j}(s)\right) d s d t
$$

which is a recursive definition of $u_{k}(x)$ and an example of a Rayleigh-Schrodinger perturbation.
Solution. Integrating 15 over $(-\infty, t)$ for some $t>0$, the left-hand side becomes (using FTC and our given assumption again)

$$
\lim _{x \rightarrow-\infty} \int_{x}^{t}\left(u_{0}^{2} w_{k}^{\prime}\right)^{\prime}=u_{0}^{2}(t) w_{k}^{\prime}(t)-\lim _{x \rightarrow-\infty} u_{0}^{2}(x) w_{k}^{\prime}(x)=u_{0}^{2}(t) w_{k}^{\prime}(t)
$$

so we have overall

$$
\begin{equation*}
u_{0}^{2}(t) w_{k}^{\prime}(t)=\int_{-\infty}^{t} u_{0}(s)^{2}\left(W(s) w_{k-1}(s)-\sum_{j=1}^{k} \lambda_{j} w_{k-j}(s)\right) d s \tag{21}
\end{equation*}
$$

We now divide both sides by $u_{0}^{2}(t)$. Now integrating the resulting equation over $(-\infty, x)$, the resulting left-hand side is

$$
\begin{aligned}
\int_{-\infty}^{x} w_{k}^{\prime}(t) d t & =w_{k}(x)-\lim _{y \rightarrow-\infty} w_{k}(y) \\
& =w_{k}(x) \text { by the assumption on the limit of } w_{k}
\end{aligned}
$$

Applying that $u_{k}(x)=u_{0}(x) w_{k}(x)$ so $w_{k}(x)=u_{k}(x) / u_{0}(x)$ to the resulting right hand side of 21), with the integration we obtain

$$
\int_{-\infty}^{x} \frac{1}{u_{0}^{2}(t)} \int_{-\infty}^{t} u_{0}(s)\left(W(s) u_{k-1}(s)-\sum_{j=1}^{k} \lambda_{k} u_{k-j}(s)\right) d s d t
$$

Applying $w_{k}(x)=u_{k}(x) / u_{0}(x)$ to the left-hand side, which is now $w_{k}(x)$, and putting everything together, we have

$$
\frac{u_{k}(x)}{u_{0}(x)}=\int_{-\infty}^{x} \frac{1}{u_{0}^{2}(t)} \int_{-\infty}^{t} u_{0}(s)\left(W(s) u_{k-1}(s)-\sum_{j=1}^{k} \lambda_{k} u_{k-j}(s)\right) d s d t
$$

Multiplying both sides by $u_{0}(x)$ yields

$$
u_{k}(x)=u_{0}(x) \int_{-\infty}^{1} \frac{1}{u_{0}^{2}(t)} \int_{-\infty}^{t} u_{0}(s)\left(W(s) u_{k-1}(s)-\sum_{j=1}^{k} \lambda_{k} u_{k-j}(s)\right) d s d t
$$

as claimed.

