
APMA 1941G Homework 1
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January 26, 2024

Problem 1

Show that p1 and u1 from the “acoustic approximation in fluid mechanics” in lecture satisfy the
following PDE, where c0

.
=

√
g′(ρ0) and ρ0 ̸= 0{

p1tt − c20∆p1 = 0 (i)

u1
tt − c20∇(div u1) = 0 (ii)

.

Proof. First, recall from lecture that we found that
ρ0u1

t = −∇p1 (a)

p1 = g′(ρ0)ρ1 (b)

ρ1t + ρ0div(u1) = 0 (c) .

We will use these three identities derived in lecture to aid in showing that p1 and u1 satisfy the
system of PDEs. Differentiating (b) with respect to t, we find that

p1t = g′(ρ0)ρ1t .

This is because ρ0 is constant, so g′(ρ0) is a function evaluated at a constant and so is a constant
(independent of t). Differentiating with respect to t again, we then obtain

p1tt = g′(ρ0)ρ1tt (1)

Using the definition of c0, (1) becomes
p1tt = c20ρ

1
tt. (2)

Differentiating (c) with respect to t, we find that

ρ1tt + ρ0div(u1
t ) = 0

Since ρ0 is constant, we can pull it into the divergence operator, and we have

ρ1tt + div(ρ0u1
t ) = 0. (3)

Now substituting (a) into (3) and rearranging, we obtain

ρ1tt = div(∇p1). (4)

Substituting (4) into (2) and using the identity div(∇p1) = ∆p1, we have shown the first PDE, (i), is
satisfied, i.e.

p1tt − c20∆p1 = 0.

To show the second PDE, (ii), is satisfied, we first take the gradient of (c) to find that

∇ρ1t + ρ0∇div(u1) = 0 (5)

again using that ρ0 is constant. Taking the time derivative of (b) gives that g′(ρ0)ρ1t = p1t . Using the
definition of c0 and taking the gradient gives that c20∇ρ1t = ∇p1t . Substituting this into (5), we have

1

c20
∇p1t + ρ0∇div(u1) = 0. (6)

Multiplying through by c20, we obtain

∇p1t + c20ρ
0∇div(u1) = 0. (7)

Taking the time derivative of (a), we have that ∇p1t = −ρ0u1
tt. Substituting this identity into (7),

−ρ0u1
tt + c20ρ

0∇div(u1) = 0. (8)

Dividing through by −ρ0 ̸= 0, we have shown the second PDE, (ii), is satisfied, i.e.

u1
tt − c20∇(div u1) = 0.
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Problem 2

Suppose u0 = u0(x) is a solution of

−u′′
0(x) + V (x)u0(x) = λ0u0(x) (9)

with lim|x|→∞ u0(x) = 0 where x ∈ R, λ0 ∈ R and V (x) is given. Suppose we want to solve the
following perturbation

−u′′
ϵ (x) + V (x)uϵ(x) + ϵW (x)uϵ(x) = λϵuϵ(x) (10)

with lim|x|→∞ uϵ(x) = 0 where W = W (x) is given.

2(a)

Expand uϵ and λϵ out as

uϵ = u0 + ϵu1 + ϵ2u2 + ...

λϵ = λ0 + ϵλ1 + ϵ2λ2 + ...

Plug this expansion into (10) and show that the O(ϵk)−terms give you the following equation:

−u′′
k + (V − λ0)uk = −Wuk−1 +

k∑
j=1

λjuk−j . (11)

What do you get when you compare the O(1) terms?

Hint: the following formula might be useful:

(

∞∑
k=0

ak)(

∞∑
k=0

bk) =

∞∑
k=0

k∑
j=0

ajbk−j .

Proof. First, we plug in the expansion. We obtain

−u′′
0−ϵu′′

1−ϵ2u′′
2−...+V (u0+ϵu1+ϵ2u2+...)+ϵW (u0+ϵu1+...) = (λ0+ϵλ1+...)(u0+ϵu1+...) (12)

Using the hint for the right hand side of (12), this becomes

(

∞∑
k=0

ϵkλk)(

∞∑
k=0

ϵkuk) =

∞∑
k=0

k∑
j=0

ϵjλjϵ
k−juk−j =

∞∑
k=0

ϵk
k∑

j=0

λjuk−j .

Now considering the O(ϵ) terms, we have

−ϵu′′
1 + ϵV u1 = −ϵWu0 + ϵ

1∑
j=0

λju1−j

Dividing through by ϵ, we have

−u′′
1 + V u1 = −Wu0 + λ0u1 + λ1u0,

or equivalently,
−u′′

1 + (V − λ0)u1 = −Wu0 + λ1u0. (13)

Directly analogously, we can see that comparing the O(ϵ2) terms on each side yields

−ϵ2u′′
2 + V ϵ2u2 + ϵ2Wu1 = ϵ2

2∑
j=0

λju2−j ,

which we can rearrange to obtain

−u′′
2 + V u2 = −Wu1 +

2∑
j=1

λju2−j . (14)
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Since all of the rest of the cases may be done in an exactly analogous fashion, to obtain directly
analogous equations to (13) and (14), we can iteratively see that an equation of the desired form
holds for each k = 1, 2, ...

O(1) terms: Comparing these terms on each side, we obtain

−u′′
0 − V u0 + ϵWu0 = λ0u0,

which is exactly the original equation (9) that u0 is a solution to.

2(b)

Let’s look for solutions of the form
uk(x) = u0(x)wk(x)

where wk is to be found. Plug this into (11) and multiply by u0 and obtain

(u2
0w

′
k)

′ = u2
0

Wwk−1 −
k∑

j=1

λjwk−j

 . (15)

Solution. First plugging in, noting that −u′
k = −u′

0wk − u0w
′
k and −u′

k = −u′′
0wk − 2u′

0w
′
k − u0w

′′
k ,

we obtain

−u′′
0wk − 2u′

0w
′
k − u0w

′′
k + (V − λ0)u0wk = −Wu0wk−1 +

k∑
j=1

λju0wk−j .

Multiplying through by u0 and collecting terms,

u0(−u′′
0wk − 2u′

0w
′
k − u0w

′′
k + (V − λ0)u0wk) = −u2

0

Wwk−1 −
k∑

j=1

λjwk−j

 (16)

Since u0 solves −u′′
0 + V u0 = λ0u0, u0(V − λ0) = u′′

0 . Substituting this into (16), this term and the
term −u′′

0wk sum to zero, so we then have

u0(2u
′
0w

′
k − u0w

′′
k) = −u2

0

Wwk−1 −
k∑

j=1

λjwk−j

 . (17)

Now we can notice that
(u2

0w
′
k)

′ = 2u0u
′
0w

′
k + u2

0w
′′
k

Using this identity in (17) and multiplying both sides by −1, we have shown that

(u2
0w

′
k)

′ = u2
0

Wwk−1 −
k∑

j=1

λjwk−j


as required.
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2(c)

Integrate (15) over R, assuming that

u2
0(x)w

′
k(x) → 0 as |x| → ∞ (18)

and solve for λk to obtain the recursive definition of λk,

λk =

∫∞
−∞ u0(Wuk−1 −

∑k−1
j=1 λjuk−j)∫∞

−∞ u2
0

.

Solution. Integrating both sides of (15) with respect to x, we have∫ ∞

−∞
(u2

0w
′
k)

′dx =

∫ ∞

−∞
u2
0(Wwk−1 − λkw0 −

k−1∑
j=1

λjwk−j)dx. (19)

First, we can see that the left-hand side is, for some arbitrary a ∈ R and using the Fundamental
Theorem of Calculus,

lim
x→∞

∫ x

a

(u2
0w

′
k)

′ + lim
x→−∞

∫ a

x

(u2
0w

′
k)

′ = lim
x→∞

(u2
0w

′
k)− u0(a)

2w′
k(a) + u2

0(a)w
′
k(a)− lim

x→−∞
(u2

0w
′
k)

= lim
x→∞

(u2
0w

′
k)− lim

x→−∞
(u2

0w
′
k)

= 0 by the assumption (18).

Thus (19) is now

0 =

∫ ∞

−∞
u2
0(Wwk−1 − λkw0 −

k−1∑
j=1

λjwk−j)dx. (20)

Since wk−1 = uk−1/u0, (20) becomes

0 =

∫ ∞

−∞
u0(Wuk−1 −

k−1∑
j=1

λjuk−j)−
∫ ∞

−∞
λku

2
0.

Since λk is constant (we can make this assumption from the problem statements given that λ0 ∈ R
and none of the λk appear with arguments), we can pull this out of the integral and rearrange to get

λk =

∫∞
−∞ u0(Wuk−1 −

∑k−1
j=1 λjuk−j)∫∞

−∞ u2
0

as required.

2(d)

Integrate (15) over (−∞, t) for t > 0, again assuming (18). Then integrate over (−∞, x) assuming
wk(x) goes to zero at −∞. Finally, use uk(x) = u0(x)wk(x) to conclude

uk(x) = u0(x)

∫ 1

−∞

1

u2
0(t)

∫ t

−∞
u0(s)

W (s)uk−1(s)−
k∑

j=1

λkuk−j(s)

 dsdt,

which is a recursive definition of uk(x) and an example of a Rayleigh-Schrodinger perturbation.

Solution. Integrating (15) over (−∞, t) for some t > 0, the left-hand side becomes (using FTC
and our given assumption again)

lim
x→−∞

∫ t

x

(u2
0w

′
k)

′ = u2
0(t)w

′
k(t)− lim

x→−∞
u2
0(x)w

′
k(x) = u2

0(t)w
′
k(t)
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so we have overall

u2
0(t)w

′
k(t) =

∫ t

−∞
u0(s)

2

W (s)wk−1(s)−
k∑

j=1

λjwk−j(s)

 ds. (21)

We now divide both sides by u2
0(t). Now integrating the resulting equation over (−∞, x), the resulting

left-hand side is ∫ x

−∞
w′

k(t)dt = wk(x)− lim
y→−∞

wk(y)

= wk(x) by the assumption on the limit of wk.

Applying that uk(x) = u0(x)wk(x) so wk(x) = uk(x)/u0(x) to the resulting right hand side of (21),
with the integration we obtain

∫ x

−∞

1

u2
0(t)

∫ t

−∞
u0(s)

W (s)uk−1(s)−
k∑

j=1

λkuk−j(s)

 dsdt.

Applying wk(x) = uk(x)/u0(x) to the left-hand side, which is now wk(x), and putting everything
together, we have

uk(x)

u0(x)
=

∫ x

−∞

1

u2
0(t)

∫ t

−∞
u0(s)

W (s)uk−1(s)−
k∑

j=1

λkuk−j(s)

 dsdt.

Multiplying both sides by u0(x) yields

uk(x) = u0(x)

∫ 1

−∞

1

u2
0(t)

∫ t

−∞
u0(s)

W (s)uk−1(s)−
k∑

j=1

λkuk−j(s)

 dsdt,

as claimed.
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