APMA 1941G Homework 1
Lulabel Ruiz Seitz
January 26, 2024

Problem 1

Show that p' and u! from the “acoustic approximation in fluid mechanics” in lecture satisfy the
following PDE, where ¢y = /¢’ (p%) and p" # 0
i — APt =0 (i)
up, — 2V(divul) =0 (i)
Proof. First, recall from lecture that we found that
plu; = —Vp! (a)
pt=g'(p")p! (b)
ot 4+ pldiv(ul) =0 (c) .
We will use these three identities derived in lecture to aid in showing that p! and u' satisfy the
system of PDEs. Differentiating (b) with respect to ¢, we find that
pi =9 )p;.
This is because p® is constant, so g’(p°) is a function evaluated at a constant and so is a constant
(independent of t). Differentiating with respect to ¢ again, we then obtain
pie = 9 (P") P (1)
Using the definition of ¢, becomes
p%t = C(Q)p%t- (2)
Differentiating (c) with respect to ¢, we find that
piy + p’div(ug) =0
Since p° is constant, we can pull it into the divergence operator, and we have
piy + div(p’uy) = 0. (3)
Now substituting (a) into and rearranging, we obtain
piy = div(Vp'). (4)

Substituting into and using the identity div(Vp!) = Ap!, we have shown the first PDE, (i), is
satisfied, i.e.

pi — caApt = 0.
To show the second PDE, (ii), is satisfied, we first take the gradient of (c) to find that

Vot + p°Vdiv(u') =0 (5)
again using that p¥ is constant. Taking the time derivative of (b) gives that ¢’(p°)pt = p}. Using the
definition of ¢y and taking the gradient gives that c2Vp} = Vp}. Substituting this into (5)), we have

1 .
%wi + p°Vdiv(u') = 0. (6)
Multiplying through by ¢2, we obtain
Vp; + cgp'Vdiv(ut) = 0. (7)
Taking the time derivative of (a), we have that Vp; = —p®u},. Substituting this identity into ,
—pul, + 2 pPVdiv(ut) = 0. (8)

Dividing through by —p® # 0, we have shown the second PDE, (ii), is satisfied, i.e.
up, — 2V (div u') = 0.
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Problem 2
Suppose up = ug(x) is a solution of

—ug () + V(2)uo(x) = Aouo(x)

9)

with lim|;| o uo(7) = 0 where x € R, Ao € R and V(z) is given. Suppose we want to solve the

following perturbation
—ul () + V(2)uc(z) + eW (2)uc(z) = Meue(z)

with lim ;o te(2) = 0 where W = W (x) is given.
2(a)
Expand u. and A\, out as

2
Ue = Uy + €U + € Uy + ...

Ae = Ao+ €A1 + €2Xa + ..

Plug this expansion into and show that the O(e*)—terms give you the following equation:

k
—u% + (V — )\o)uk = —Wug_1 + Z )\juk_j.
j=1
What do you get when you compare the O(1) terms?
Hint: the following formula might be useful:
[e%S) [e%S) oo k
Q_aQ_bi) =3 > aibe—y.
k=0 k=0 k=0 j=0

Proof. First, we plug in the expansion. We obtain

(10)

(11)

—uf —eul —uly — ...+ V (ug+euy +ug +... )+ eW (ug +euy +...) = (Ao +e +...) (ug +eus +...) (12)

Using the hint for the right hand side of , this becomes

00 0o oo k 0o k
(Z ek/\k)(z Fuy) = Z Z ej)\jek_juk_j = Z ek Z AjUk—j-
k=0 k=0 k=0 j=0

k=0 j=0

Now considering the O(e) terms, we have

1
—euf + eVuy = —eWug + € E Ajui—j
j=0

Dividing through by €, we have
—uy + Vug = —Wug + Mus + Aug,

or equivalently,
—u/ll + (V - )\0>U1 = —Wup + AMugp.
Directly analogously, we can see that comparing the O(€?) terms on each side yields

2
762u'2/ + Ve us + EWuy = €2 E Ajua—_j,
i=0

which we can rearrange to obtain
2
7u/2/ + VUQ = 7WU1 + Z )\jUQ_j.

Jj=1
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Since all of the rest of the cases may be done in an exactly analogous fashion, to obtain directly
analogous equations to and , we can iteratively see that an equation of the desired form
holds for each &k =1,2, ...

O(1) terms: Comparing these terms on each side, we obtain
—ugy — Vug + eWug = Aguo,
which is exactly the original equation @D that ug is a solution to.

2(b)

Let’s look for solutions of the form
ug(z) = uo(z)wi ()

where wy, is to be found. Plug this into and multiply by uo and obtain

k
(udw},) = ud | Wwy_1 — Z Njwi—j | - (15)
j=1
Solution. First plugging in, noting that —uj, = —u{wy — uwow), and —u) = —ugwy — 2ujw), — vewy,,
we obtain
k
—ugwk - 2’LL6’U);c - UO’U}Z + (V — )\o)umﬂk = —Wupwg_1 + Z )\juowk,j.
j=1
Multiplying through by ug and collecting terms,
k
uo(—ugwy, — 2upwy, — uowy + (V — Xo)uowy,) = —ud | Wwy_1 — Z AjWe—j (16)
j=1

Since ug solves —uf + Vug = Aoug, uo(V — Ag) = ug. Substituting this into , this term and the
term —ugwy sum to zero, so we then have

k
uo (2uyw), — uowy) = —ud | Wwy_y — Z)\jwk,j . (17)
j=1

Now we can notice that
(ugwy)" = 2uougwy, + ugwy
Using this identity in and multiplying both sides by —1, we have shown that
k
(wgwy) = ug | Wwk—1 =Y Njwg-

=1

as required.



2(c)
Integrate over R, assuming that

ud(z)wh(z) = 0 as |z| — oo (18)
and solve for \; to obtain the recursive definition of Ag,

2o o (Wuk—y — Y52 Aju—j)

T

Solution. Integrating both sides of with respect to x, we have

Ak =

k—1

/ (udw},) de = / ud(Wwg_1 — A\pwo — Z Ajwg—j)dx. (19)
—00 —o0

j=1

First, we can see that the left-hand side is, for some arbitrary a € R and using the Fundamental
Theorem of Calculus,

tim [ () + tim [ (dul) = lim (uBul) — uo(a)wh(a) + u(@)wh(@) — lim (udu})
' ' — Tim (3uw}) — lim_(udu})
= 0 by the assumption .
Thus is now
0= /00 ud(Wwg_1 — Mpwo — kz_:l Ajwy—;)dx. (20)
oo =

Since wg—1 = ug—1/uo, becomes

oS k—1 e
0= / UO(Wuk,1 — Z )\juk,]‘) — / )\kug
—00 j=1 —00

Since Ay is constant (we can make this assumption from the problem statements given that Ao € R
and none of the A, appear with arguments), we can pull this out of the integral and rearrange to get

ffooo UO(WUk—l - Zf;ll /\juk_j)
ffooo ’LL2

Ak =

as required.

2(d)

Integrate over (—oo,t) for t > 0, again assuming . Then integrate over (—oo,x) assuming
wy(x) goes to zero at —oo. Finally, use ug(z) = ugp(z)wi(x) to conclude

1 ¢
ug(x) :uo(x)/_ uozl(t)/_ uo($) $)ug—1( Z)\kuk ;(s) | dsdt,

which is a recursive definition of ug(x) and an example of a Rayleigh-Schrodinger perturbation.

Solution. Integrating over (—oo,t) for some ¢t > 0, the left-hand side becomes (using FTC
and our given assumption again)

t
!

i @) = w0l (r) — lim ud(e)wl (@) = wd(twl(1)



so we have overall

u%(t)wfc(t):/ uo(s)? | W(s)wp_1( Z)\ wi—;(s) | ds. (21)

—00

We now divide both sides by uZ(¢). Now integrating the resulting equation over (—oo, x), the resulting
left-hand side is

/z wy,()dt = wy(z) — lim  w(y)

o y—>—00

= wg(x) by the assumption on the limit of wy.

Applying that ug(z) = ug(x)wy(x) so wi(z) = ug(z)/uo(x) to the resulting right hand side of (1)),
with the integration we obtain

x 1 t
»/oou(z)(t)/ UO(S) Uk 1 Z/\kUk —j dsdt.

Applying wi(z) = uk(x)/ug(z) to the left-hand side, which is now wg(z), and putting everything
together, we have

wle) _ 7] t uo(s s)u up_i(s) | ds
uo(z) 7/ 2(zf)/ o(s) k=1 Z)\k k—j dsdt.

—oo U —co

Multiplying both sides by wug(x) yields

ug(x) zuo(x)/ %/ ug($) 8)ugp—1( Z)\kuk j dsdt,

as claimed.



