APMA 1941G - HOMEWORK 2

Problem 1: (8 points)

Show that, in the "Derivation of the KdV equation" example in lecture, after the change of variable

$$
\left\{\begin{aligned}
\xi & :=\sqrt{\epsilon}\left(x-c_{0} t\right) \\
\tau & :=\epsilon^{\frac{3}{2}} t \\
\psi & :=\sqrt{\epsilon} \phi
\end{aligned}\right.
$$

Where $c^{0}=\sqrt{h^{0}}$ the PDE for $\tilde{\psi}$ and \tilde{h} become

$$
\left\{\begin{aligned}
\epsilon \tilde{\psi}_{\xi \xi}+\tilde{\psi}_{y y} & =0 & & \\
\tilde{\psi}_{y} & =0 & & \text { at } y=0 \\
\epsilon^{2} \tilde{\psi}_{\tau}-\epsilon c_{0} \tilde{\psi}_{\xi}+\frac{1}{2}\left(\epsilon\left(\tilde{\psi}_{\xi}\right)^{2}+\left(\tilde{\psi}_{y}\right)^{2}\right) & =-\epsilon\left(\tilde{h}-h^{0}\right) & & \text { at } y=\tilde{h} \\
\epsilon^{2} \tilde{h}_{\tau}+\epsilon\left(\tilde{\psi}_{\xi}-c_{0}\right) \tilde{h}_{\xi} & =\tilde{\psi}_{y} & & \text { at } y=\tilde{h}
\end{aligned}\right.
$$

Here $\tilde{\psi}$ and \tilde{h} are ψ and h in the new variables, i.e.

$$
\psi(x, y, t)=\tilde{\psi}(\xi, y, \tau) \text { and } h(x, t)=\tilde{h}(\xi, \tau)
$$

It may also be useful to use $\tilde{\phi}$ i.e. $\phi(x, y, t)=\tilde{\phi}(\xi, y, \tau)$

Note: For sake of clarity, the original PDE are

$$
\left\{\begin{aligned}
\Delta \phi & =0 & & \\
\phi_{y} & =0 & & \text { at } y=0 \\
\phi_{t}+\frac{1}{2}|\nabla \phi|^{2} & =-\left(h-h^{0}\right) & & \text { at } y=h \\
h_{t}+\phi_{x} h_{x} & =\phi_{y} & & \text { at } y=h
\end{aligned}\right.
$$

Problem 2: (12 points, 4 points each)
Let u^{ϵ} and v^{ϵ} solve the system

$$
\left\{\begin{array}{l}
u_{t}^{\epsilon}+\frac{1}{\epsilon} u_{x}^{\epsilon}=\frac{\left(v^{\epsilon}\right)^{2}-\left(u^{\epsilon}\right)^{2}}{\epsilon^{2}} \tag{1}\\
v_{t}^{\epsilon}-\frac{1}{\epsilon} v_{x}^{\epsilon}=\frac{\left(u^{\epsilon}\right)^{2}-\left(v^{\epsilon}\right)^{2}}{\epsilon^{2}}
\end{array}\right.
$$

Let our Ansatz be:

$$
\begin{aligned}
u^{\epsilon} & =u^{0}+\epsilon u^{1}+o(\epsilon) \\
v^{\epsilon} & =v^{0}+\epsilon v^{1}+o(\epsilon)
\end{aligned}
$$

And moreover suppose that $u^{0}>0$ and $v^{0}>0$
(a) Plug the Ansatz into (1) and show that

$$
\begin{gather*}
u^{0}=v^{0} \tag{2}\\
u_{x}^{0}=2 u^{0}\left(v^{1}-u^{1}\right) \tag{3}
\end{gather*}
$$

(b) Notice that if we add the two equations of (11), we get that

$$
\begin{equation*}
\left(u^{\epsilon}+v^{\epsilon}\right)_{t}+\frac{1}{\epsilon}\left(u^{\epsilon}-v^{\epsilon}\right)_{x}=0 \tag{4}
\end{equation*}
$$

Plug the Ansatz into (4) and show that

$$
u_{t}^{0}=\frac{1}{2}\left(v^{1}-u^{1}\right)_{x}
$$

(c) Using the results of (a) and (b) show that u^{0} is a solution of the nonlinear heat equation

$$
w_{t}-\frac{1}{4}(\ln w)_{x x}=0
$$

Hint: Use (3) to write $\left(v^{1}-u^{1}\right)_{x}$ only in terms of u^{0} and its derivatives. It may be helpful to write out explicitly what $(\ln w)_{x x}$ is

