APMA 1941G Homework 2

Lulabel Ruiz Seitz

February 2, 2024

Problem 1

Show that, in the "Derivation of the KdV equation" example in lecture, after the change of variables,

$$
\left\{\begin{array}{l}
\xi \doteq \sqrt{\epsilon}\left(x-c_{0} t\right) \\
\tau \doteq \epsilon^{3 / 2} t \\
\psi \doteq \sqrt{\epsilon} \phi
\end{array}\right.
$$

where $c^{0}=\sqrt{h^{0}}$ the PDE for $\tilde{\psi}$ and \tilde{h} become

$$
\left\{\begin{array}{l}
\epsilon \tilde{\psi}_{\xi \xi}+\tilde{\psi}_{y y}=0 \tag{i}\\
\tilde{\psi}_{y}=0 \quad \text { at } y=0 \\
\epsilon^{2} \tilde{\psi}_{\tau}-\epsilon c_{0} \tilde{\psi}_{\xi}+\frac{1}{2}\left(\epsilon\left(\tilde{\psi}_{\xi}\right)^{2}+\left(\tilde{\psi}_{y}\right)^{2}\right)=-\epsilon\left(\tilde{h}-h^{0}\right) \quad \text { at } y=\tilde{h} \\
\epsilon^{2} \tilde{h}_{\tau}+\epsilon\left(\tilde{\psi}_{\xi}-c_{0}\right) \tilde{h}_{\xi}=\tilde{\psi}_{y} \quad \text { at } y=\tilde{h}
\end{array}\right.
$$

where $\psi(x, y, t)=\tilde{\psi}(\xi, y, \tau)$ and $h(x, t)=\tilde{h}(\xi, \tau)$, and $\tilde{\phi}$ similarly denotes ϕ in the new variables. The starting PDE is

$$
\left\{\begin{array}{l}
\Delta \phi=0 \tag{A}\\
\phi_{y}=0 \quad \text { at } y=0 \\
\phi_{t}+\frac{1}{2}|\nabla \phi|^{2}=-\left(h-h^{0}\right) \text { at } y=h \\
h_{t}+\phi_{x} h_{x}=\phi_{y} \text { at } y=h
\end{array}\right.
$$

Proof. First, write (A) in the new variables. We evaluate

$$
\begin{aligned}
\Delta \phi & =\phi_{x x}+\phi_{y y} \\
& =\tilde{\phi}_{\xi \xi} \cdot \sqrt{\epsilon} \cdot \sqrt{\epsilon}+\tilde{\phi}_{y y} \text { chain rule } \\
& =\frac{1}{\sqrt{\epsilon}}\left(\epsilon \tilde{\psi}_{\xi \xi}+\tilde{\psi}_{y y}\right) \text { definition of } \psi, \text { linearity of the derivative, and chain rule for } \xi
\end{aligned}
$$

Since $\Delta \phi=0, \frac{1}{\sqrt{\epsilon}}\left(\epsilon \tilde{\psi}_{\xi \xi}+\tilde{\psi}_{y y}\right)=0$. Thus

$$
\epsilon \tilde{\psi}_{\xi \xi}+\tilde{\psi}_{y y}=0
$$

yielding (i).
Next, we write (B) in the new variables. Since y is not transformed, we also have $\tilde{\phi}_{y}=0$ at $y=0$, which implies $\tilde{\psi}_{y}=0$ at $y=0$ since $\tilde{\psi}=\sqrt{\epsilon} \tilde{\phi}$. Thus, we also have (ii).

Now we write (C) in the new variables. First, by the chain rule (noting that the variable t is both in τ and $\xi)$,

$$
\phi_{t}=\left(\epsilon^{-1 / 2} \psi\right)_{t}=\epsilon^{-1 / 2} \psi_{t}=\epsilon^{-1 / 2} \epsilon^{3 / 2} \tilde{\psi}_{\tau}-\epsilon^{-1 / 2} c_{0} \epsilon^{1 / 2} \tilde{\psi}_{\xi}=\epsilon \tilde{\psi}_{\tau}-c_{0} \tilde{\psi}_{\xi}
$$

For the second term,

$$
\frac{1}{2}|\nabla \phi|^{2}=\frac{1}{2}\left(\epsilon^{-1 / 2}\right)^{2}|\nabla \psi|^{2}=\frac{1}{2} \epsilon^{-1}\left(\left(\psi_{x}\right)^{2}+\left(\psi_{y}\right)^{2}\right)=\frac{1}{2} \epsilon^{-1}\left((\sqrt{\epsilon})^{2}\left(\tilde{\psi}_{\xi}\right)^{2}+\left(\tilde{\psi}_{y}\right)^{2}\right) .
$$

Adding together the two terms in the new variables and setting them equal to the right-hand side, we obtain

$$
\epsilon \tilde{\psi}_{\tau}-c_{0} \tilde{\psi}_{\xi}+\frac{1}{2} \epsilon^{-1}\left(\epsilon\left(\tilde{\psi}_{\xi}\right)^{2}+\left(\tilde{\psi}_{y}\right)^{2}\right)=-\left(\tilde{h}-h^{0}\right)
$$

(valid at $y=\tilde{h}$, noting that the transformation in h did not necessitate any additional changes here because we are not differentiating and h^{0} is a constant). Multiplying through by ϵ to clear the fraction, we obtain exactly (iii).

Lastly, we write (D) in the new variables. First,

$$
h_{t}=\epsilon^{3 / 2} \tilde{h}_{\tau}-\epsilon^{1 / 2} c_{0} \tilde{h}_{\xi} .
$$

Next,

$$
\phi_{x}=\sqrt{\epsilon} \tilde{\phi}_{\xi}=\tilde{\psi}_{\xi}
$$

and

$$
h_{x}=\sqrt{\epsilon} \tilde{h}_{\xi} .
$$

We then can replace the term

$$
\phi_{x} h_{x}=\epsilon^{1 / 2} \tilde{\psi}_{\xi} \tilde{h}_{\xi}
$$

Lastly,

$$
\phi_{y}=\tilde{\phi}_{y}=\epsilon^{-1 / 2} \tilde{\psi}_{y} .
$$

Putting this all together and multiplying through by $\epsilon^{1 / 2}$ in order to clear the fraction, we obtain

$$
\epsilon^{2} \tilde{h}_{\tau}-\epsilon c_{0} \tilde{h}_{\xi}+\epsilon \tilde{\psi}_{\xi} \tilde{h}_{\xi}=\tilde{\psi}_{y}
$$

or equivalently,

$$
\epsilon^{2} \tilde{h}_{\tau}+\epsilon\left(\tilde{\psi}_{\xi}-c_{0}\right) \tilde{h}_{\xi}=\tilde{\psi}_{y}
$$

at $y=\tilde{h}$ which is (iv) as desired.

Problem 2

Let u^{ε} and v^{ε} solve the system

$$
\left\{\begin{array}{l}
u_{t}^{\varepsilon}+\frac{1}{\varepsilon} u_{x}^{\varepsilon}=\frac{\left(v^{\varepsilon}\right)^{2}-\left(u^{\varepsilon}\right)^{2}}{\varepsilon^{2}} \tag{1}\\
v_{t}^{\varepsilon}-\frac{1}{\varepsilon} v_{x}^{\varepsilon}=\frac{\left(u^{\varepsilon}\right)^{2}-\left(v^{\varepsilon}\right)^{2}}{\varepsilon^{2}}
\end{array}\right.
$$

Let our ansatz be:

$$
\begin{aligned}
& u^{\varepsilon}=u^{0}+\varepsilon u^{1}+o(\varepsilon) \\
& v^{\varepsilon}=v^{0}+\varepsilon v^{1}+o(\varepsilon)
\end{aligned}
$$

and suppose that $u^{0}>0$ and $v^{0}>0$.

(a)

Plug the ansatz into (1) and show that

$$
\begin{gather*}
u^{0}=v^{0} \tag{2}\\
u_{x}^{0}=2 u^{0}\left(v^{1}-u^{1}\right) \tag{3}
\end{gather*}
$$

Proof. First, plugging the ansatz into the first equation in the system (1), we obtain (omitting the $o(\cdot)$ terms as we will justify that this will not affect our comparisons)

$$
\begin{equation*}
u_{t}^{0}+\epsilon u_{t}^{1}+\frac{1}{\epsilon} u_{x}^{0}+u_{x}^{1}=\frac{\left(v^{0}\right)^{2}-\left(u^{0}\right)^{2}}{\epsilon^{2}}+\frac{2\left(v^{0} v^{1}-u^{0} u^{1}\right)}{\epsilon}+\left(v^{1}\right)^{2}-\left(u^{1}\right)^{2} \tag{4}
\end{equation*}
$$

It is clear that the stand-alone $o(\cdot)$ terms will not directly affect the comparison as they will appear on both sides. However, on the right-hand side, we have omitted cross-terms involving u or v terms and the $o(\epsilon)$ terms,

$$
\left(2 v^{0} o(\epsilon)+\epsilon 2 v^{1} o(\epsilon)\right)-\left(2 u^{0} o(\epsilon)+\epsilon 2 u^{1} o(\epsilon)\right)
$$

Of these, the only ones that would be relevant to the following comparison is when we compare terms divided by ϵ, we could view $\frac{\left(2 v^{0}-2 u^{0}\right) o(\epsilon)}{\epsilon^{2}}$ as $\frac{2\left(v^{0}-u^{0}\right) o(1)}{\epsilon}$, but that will be zero by what we find from a comparison of the terms on the order ϵ^{-2}, which none of these additional cross-terms are. We can compare the terms of order ϵ^{-2} first and this will not affect any of the other comparisons, and this will yield that the only relevant cross-terms are zero. The remaining cross-terms could be viewed as order 1 which will not be relevant with the following comparisons.

We may now proceed with the comparisons, and notice that there are no terms divided by ϵ^{2} on the left-hand side of (4), so to match the order,

$$
\frac{\left(v^{0}\right)^{2}-\left(u^{0}\right)^{2}}{\epsilon^{2}}=0
$$

which implies

$$
v^{0}=u^{0}
$$

since $v^{0}, u^{0}>0$ by assumption. We have thus shown (2). To match the terms divided by ϵ, we have that

$$
u_{x}^{0}=2\left(v^{0} v^{1}-u^{0} u^{1}\right)
$$

but since $u^{0}=v^{0}$, this is equivalent to

$$
u_{x}^{0}=2\left(u^{0} v^{1}-u^{0} u^{1}\right)=2 u^{0}\left(v^{1}-u^{1}\right)
$$

which is (3).

(b)

Notice that if we add the two equations of (1), we get that

$$
\begin{equation*}
\left(u^{\varepsilon}+v^{\varepsilon}\right)_{t}+\frac{1}{\varepsilon}\left(u^{\varepsilon}-v^{\varepsilon}\right)_{x}=0 \tag{5}
\end{equation*}
$$

Plug the ansatz into (5) and show that

$$
u_{t}^{0}=\frac{1}{2}\left(v^{1}-u^{1}\right)_{x} .
$$

Proof. Again omitting the $o(\cdot)$ terms and plugging in, we obtain

$$
u_{t}^{0}+\epsilon u_{t}^{1}+v_{t}^{0}+\epsilon v_{t}^{1}+\frac{1}{\epsilon}\left(u_{x}^{0}+\epsilon u_{x}^{1}-v_{x}^{0}-\epsilon v_{x}^{1}\right)=0 .
$$

Comparing the terms of order 1 after distributing the epsilon, we have

$$
u_{t}^{0}+v_{t}^{0}+u_{x}^{1}-v_{x}^{1}=0
$$

Since we previously found that $u^{0}=v^{0}$ though, it must be the case $u_{t}^{0}=v_{t}^{0}$, so the above may be re-written

$$
2 u_{t}^{0}=v_{x}^{1}-u_{x}^{1},
$$

so we obtain

$$
u_{t}^{0}=\frac{1}{2}\left(v^{1}-u^{1}\right)_{x}
$$

as desired.
(c)

Using the results of (a) and (b), show that u^{0} is a solution of the nonlinear heat equation

$$
\begin{equation*}
w_{t}-\frac{1}{4}(\ln w)_{x x}=0 . \tag{6}
\end{equation*}
$$

Hint: Use (3) to write $\left(v^{1}-u^{1}\right)_{x}$ only in terms of u^{0} and its derivatives. It may be helpful to write out explicitly what $(\ln w)_{x x}$ is.

Proof. First, we follow the hint and rewrite

$$
u_{t}^{0}=\frac{1}{2}\left(v^{1}-u^{1}\right)_{x}
$$

but using the result of (a), $v^{1}-u^{1}=\frac{u_{x}^{0}}{2 u^{0}}$, so

$$
\begin{equation*}
\left(v^{1}-u^{1}\right)_{x}=\frac{2 u^{0} u_{x x}^{0}-2 u_{x}^{0} u_{x}^{0}}{4\left(u^{0}\right)^{2}}=\frac{1}{2}\left(\frac{u^{0} u_{x x}^{0}-\left(u_{x}^{0}\right)^{2}}{\left(u_{0}\right)^{2}}\right) . \tag{7}
\end{equation*}
$$

Thus, u^{0} satisfies

$$
\begin{equation*}
u_{t}^{0}-\frac{1}{4}\left(\frac{u^{0} u_{x x}^{0}-\left(u_{x}^{0}\right)^{2}}{\left(u_{0}\right)^{2}}\right)=0 \tag{8}
\end{equation*}
$$

Note that

$$
(\ln w)_{x x}=\left(\frac{w_{x}}{w}\right)_{x}=\frac{w w_{x x}-w_{x}^{2}}{w^{2}}
$$

where the first equality is due to the chain rule. Notice that (7) may accordingly be rewritten $\frac{1}{2}\left(\ln u^{0}\right)_{x x}$, using u^{0} in place of w. Substituting this into 8), we obtain

$$
u_{t}^{0}-\frac{1}{4}\left(\ln u_{0}\right)_{x x}=0
$$

showing that u^{0} is indeed a solution of the nonlinear heat equation as claimed.

