APMA 1941G - HOMEWORK 3

Problem 1: (10 points, 2 points each)
The purpose of this problem is to derive an explicit solution of a KdV equation. Consider the following equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

Where $u=u(x, t), x \in \mathbb{R}, t>0$
(a) Suppose u has the form

$$
u(x, t)=\phi(x-c t) \text { for some } c \in \mathbb{R} \text { and some } \phi=\phi(s)
$$

Plug u into the KdV equation to obtain that ϕ must satisfy

$$
-c \phi^{\prime}+6 \phi \phi^{\prime}+\phi^{\prime \prime \prime}=0 \text { where }{ }^{\prime}=\frac{d}{d s}
$$

(b) Anti-differentiate the equation found in (a), multiply the resulting equation by ϕ^{\prime} and anti-differentiate again to find that ϕ must satisfy

$$
\frac{\left(\phi^{\prime}\right)^{2}}{2}=-\phi^{3}+\frac{c}{2} \phi^{2}+A \phi+B \text { for some } A \text { and } B
$$

For the rest of the problem, we'll set $A=B=0$, so we get

$$
\frac{\left(\phi^{\prime}\right)^{2}}{2}=\phi^{2}\left(-\phi+\frac{c}{2}\right)
$$

From which we get $\phi^{\prime}=-\phi \sqrt{c-2 \varphi}$ (the - is for convenience)
(c) Using separation of variables (like in your ODE course), show that we must have

$$
s+C=-\int \frac{d \phi}{\phi \sqrt{c-2 \phi}} \text { where } C \text { is arbitrary }
$$

(d) Use the substitution $\phi=\frac{c}{2} \operatorname{sech}^{2}(\theta)$ to show

$$
s=\left(\frac{2}{\sqrt{c}}\right) \theta-C
$$

Note: You can assume that $\frac{d \operatorname{sech}(\theta)}{d \theta}=-\operatorname{sech}(\theta) \tanh (\theta)$ and that $1-\operatorname{sech}^{2}(\theta)=\tanh ^{2}(\theta)$, and that here $\tanh (\theta) \geq 0$
(e) Use (d) and the definition of θ to conclude that

$$
\phi(s)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(s+C)\right)
$$

And finally conclude that

$$
u(x, t)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(x-c t+C)\right)
$$

Problem 2: (10 points, 2.5 points each)
The purpose of this problem is to prove Stirling's formula, which is very useful in probability; for example, it is used in the proof of the Central Limit Theorem:

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} \text { as } n \rightarrow \infty
$$

Here $f \sim g$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$, or equivalently $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=1$
(a) Show using induction on $n=1,2, \cdots$ and integration by parts that (you can assume that the terms at $t=\infty$ are 0)

$$
\int_{0}^{\infty} e^{-t} t^{n-1} d t=(n-1)!
$$

Note: If you're unfamiliar with induction, please check out:
Video: Induction Basic Example
Video: Induction With Functions
(b) Use the substitution $s=\frac{t}{n}$ to show the above integral equals

$$
n^{n} \int_{0}^{\infty} e^{-n(s-\ln (s))} \frac{1}{s} d s
$$

(c) The general Laplace method says that:

If ϕ is a smooth function that has a max at x_{0} with $\phi^{\prime}\left(x_{0}\right)=0$ and $\phi^{\prime \prime}\left(x_{0}\right)<0$, and $a(x)$ is any smooth function (not necessarily with compact support), then, as $\epsilon \rightarrow 0$

$$
\int_{0}^{\infty} a(x) e^{\frac{\phi(x)}{\epsilon}} d x=\sqrt{\frac{2 \pi \epsilon}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} e^{\frac{\phi\left(x_{0}\right)}{\epsilon}} a\left(x_{0}\right)(1+o(1))
$$

Apply the general Laplace method to the integral in (b) with $\epsilon=\frac{1}{n}$ as well as the result in (a) to show that as $n \rightarrow \infty$

$$
\frac{(n-1)!}{n^{n}}=\sqrt{2 \pi} n^{-\frac{1}{2}} e^{-n}(1+o(1))
$$

(d) Use the identity in (c) and the definition of \sim given at the beginning of the problem to conclude that

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

