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Problem 1

The purpose of this problem is to derive an explicit solution of a KdV equation. Consider the following
equation

ut + 6uux + uxxx = 0 (1)

where u = u(x, t), x ∈ R, t > 0.

(a)

Suppose u has the form u(x, t) = ϕ(x− ct) for some c ∈ R and some ϕ = ϕ(s). Plug u into the KdV
equation to obtain that ϕ must satisfy

−cϕ′ + 6ϕϕ′ + ϕ′′′ = 0. (2)

Derivation. First, using the chain rule,

ut =
∂

∂t
ϕ(x− ct) = −cϕ′

where the ′, as in the problem statement, denotes the derivative with respect to the parameter of ϕ,
which is s. Similarly, ux = ϕ′ and uxxx = ϕ′′′. Making these substitutions, along with u = ϕ, in (??),
we obtain

−cϕ′ + 6ϕϕ′ + ϕ′′′ = 0.

Thus, since u satisfies (1), we can find that by making the ansatz that u(x, t) has the form ϕ(x− ct),
it satisfies exactly (2).

(b)

Anti-differentiate the equation found in (a), multiply the resulting equation by ϕ′ and anti-differentiate
again to find that ϕ must satisfy

(ϕ′)2

2
= −ϕ3 +

c

2
ϕ2 +Aϕ+B (3)

for some A and B.

Derivation. First, note that

ϕϕ′ = (
1

2
ϕ2)′.

Now anti-differentiating (2) with respect to s, we obtain

−cϕ+ 3ϕ2 + ϕ′′ +A = 0.

Here, the coefficient of 3 came from 6 · 1
2 , and A is an arbitrary constant. Now multiplying through

by ϕ′, noticing that 3ϕ2ϕ′ = (ϕ3)′ and ϕ′′ϕ′ = ( 12 (ϕ
′)2)′ and anti-differentiating again,

ϕ3 − c

2
ϕ2 +

(ϕ′)2

2
+Aϕ+B = 0.

Re-arranging, and re-labelling −A and −B as A and B (which we may do as they are arbitrary
constants), we obtain exactly (3).
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(c)

We set A and B to be zero in the above, so we obtain

ϕ′ = −ϕ
√
c− 2ϕ. (4)

Using separation of variables, show that

s+ C = −
∫

dϕ

ϕ
√
c− 2ϕ

(5)

where C is arbitrary.

Derivation. Beginning with (4) and writing it in a more suggestive form,

dϕ

ds
= −ϕ

√
c− 2ϕ.

Re-arranging this and integrating both sides (as in separation of variables), we obtain

−
∫

dϕ

ϕ
√
c− 2ϕ

=

∫
ds.

The right-hand side evaluates to s+ C for an arbitrary constant C, yielding exactly (5) as required.

(d)

Use the substitution ϕ = c
2 sech

2(θ) to show

s =

(
2√
c

)
θ − C (6)

Note that you can assume that dsech(θ)
dθ = −sech(θ)tanh(θ) and that 1 − sech2(θ) = tanh2(θ), and

that here tanh(θ) ≥ 0.

Derivation. Using the given substitution in (5), we are essentially doing u-substitution, so we
account for the fact that dϕ = c

2 · 2sech(θ) · −sech(θ)tanh(θ)dθ = −csech2(θ)tanh(θ). We then obtain

s+ C =

∫
csech2(θ)tanh(θ)

c
2 sech

2(θ)
√

c(1− sech2(θ))
dθ.

Simplifying and using the identity 1− sech2(θ) = tanh2(θ), we obtain

s+ C =

∫
2tanh(θ)√
ctanh(θ)

dθ.

Note that here we used the assumption that tanh(θ) ≥ 0 . We can simplify further to

s+ C =

∫
2√
c
dθ.

Now completing the integration on the right hand side (and noting that we obtain another arbitrary
constant of integration, so the following C is technically not the same C though this does not matter
as it is arbitrary)

s+ C =

(
2√
c

)
θ.

Re-arranging this immediately yields (6) as required.
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(e)

Use (d) and the definition of θ to conclude that

ϕ(s) =
c

2
sech2

(√
c

2
(s+ C)

)
(7)

and finally conclude that

u(x, t) =
c

2
sech2

(√
c

2
(x− ct+ C)

)
. (8)

Conclusion. First re-arranging (6) to obtain θ in terms of s, we have

θ =

√
c

2
(s+ C).

Since ϕ(s) = c
2 sech

2(θ), then

ϕ(s) =
c

2
sech2

(√
c

2
(s+ C)

)
,

which verifies (7). Since at the outset we made the ansatz u(x, t) = ϕ(x − ct), we replace s with
x− ct, and obtain

u(x− ct) =
c

2
sech2

(√
c

2
(x− ct+ C)

)
,

verifying (8).
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Problem 2

The purpose of this problem is to prove Stirling’s formula, or that n! ∼
√
2πnn+ 1

2 e−n as n → ∞.

(a)

Show using induction on n = 1, 2, ... and integration by parts that (assuming the terms at t = ∞ are
0) ∫ ∞

0

e−ttn−1dt = (n− 1)!. (9)

Proof. Base Case. We first show the required statement is true for n = 1. Plugging n = 1 into (9),
we obtain

∫∞
0

e−tdt on the left hand side and 0! = 1 on the right hand side. Indeed, these are equal,
as the left hand side evaluates to limx→∞(−e−x) + e0 = 1.
Inductive Hypothesis. Suppose that (9) is true for some arbitrary n ∈ N.
Inductive Step. Given the inductive hypothesis is true, we aim to now show that (9) holds for n+ 1,
where this is the (arbitrary) n from the inductive hypothesis. Considering (9) for n+ 1 rather than
n, what we aim to show is that ∫ ∞

0

e−ttndt = n!.

Using integration by parts for the integral, where we are using u = tn and dv = e−tdt,∫ ∞

0

e−ttndt = −e−ttn |∞0 + n

∫ ∞

0

e−ttn−1dt

= n

∫ ∞

0

e−ttn−1dt due to our assumption and 0n = 0 for n = 1, 2, ...

= n(n− 1)! inductive hypothesis

= n!

Thus, we have shown the inductive step. Therefore, we may conclude that the desired identity holds
for all n = 1, 2, ...

(b)

Use the substitution s = t
n to show the integral in (9) equals

nn

∫ ∞

0

e−n(s−ln(s)) 1

s
ds.

Proof. Since s = t/n, ds = 1
ndt, and we may rewrite (noting the bounds are still the same, as we

are just scaling by a constant factor)∫ ∞

0

e−ttn−1dt =

∫ ∞

0

e−ns(sn)n−1 1

n
ds

= nn

∫ ∞

0

e−nssn−1ds

= nn

∫ ∞

0

e−n(s−ln(s)) 1

s
ds

as claimed.

(c)

The general Laplace method says that: If ϕ is a smooth function that has a max at x0 with ϕ′(x0) = 0
and ϕ′′(x0) < 0, and a(x) is any smooth function (not necessarily with compact support), then, as
ϵ → 0 ∫ ∞

0

a(x)e
ϕ(x)

ϵ dx =

√
2πϵ

|ϕ′′(x0)|
e

ϕ(x0)
ϵ a(x0)(1 + o(1)).
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Apply the general Laplace method to the integral in (b) with ϵ = 1
n as well as the result in (a) to

show that as n → ∞,
(n− 1)!

nn
=

√
2πn− 1

2 e−n(1 + o(1)).

Proof. First, we justify our application of Laplace’s method. We identify ϵ
.
= 1

n , so that ϵ → 0 is
equivalent to n → ∞. Next, we identify a(x) with 1

s (the variable of integration is s), and ϕ(x) with
−(s − ln(s)). Indeed, 1

s is smooth on (0,∞) (the singularity at zero should not be an issue because
the integral is still well-defined and we will not be evaluating a at zero, as we will see). Similarly,
−(s − ln(s)) is smooth on (0,∞). To maximize this function, we differentiate and set −1 + 1

s = 0,
so we find s = 1 is the maximizer. The other properties in the hypothesis of the function follow
immediately, and we have also verified x0 ̸= 0.

Now, applying the method, we have that∫ ∞

0

e−n(s−ln(s)) 1

s
ds =

√
2π

|ϕ′′(1)|n
enϕ(1)a(1)(1 + o(1))

We compute: ϕ(1) = −1, ϕ′′(1) = −(1)−2 = −1, a(1) = 1, hence∫ ∞

0

e−n(s−ln(s)) 1

s
ds =

√
2π

n
e−n(1 + o(1))

Using the result from (a) to replace the integral on the left, noting that due to (b) it is in particular

equal to (n−1)!
nn , we obtain

(n− 1)!

nn
=

√
2πn−1/2e−n(1 + o(1))

as required.

(d)

Multiply the above identity by n on both sides and conclude using the definition of ∼ that

n! ∼
√
2πnn+ 1

2 e−n.

Conclusion. Multiplying through by n, since n(n− 1)! = n!,

n!

nn
=

√
2πn

1
2 e−n(1 + o(1)).

Multiplying through by nn,
n! =

√
2πnn+ 1

2 e−n(1 + o(1)).

We can see that

lim
n→∞

n!√
2πnn+ 1

2 e−n
= lim

n→∞
1 + o(1) = 1

since a function f(n) being o(1) means limn→∞ f(n) = 0. Thus, according to the definition of ∼, we
may conclude

n! ∼
√
2πnn+ 1

2 e−n.
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