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Problem 1

The purpose of this problem is to derive an explicit solution of a KdV equation. Consider the following
equation
Uy + 60Uy + Uy = 0 (1)

where u = u(z,t), x € R, £ > 0.

(a)

Suppose u has the form u(x,t) = ¢p(z — ct) for some ¢ € R and some ¢ = ¢(s). Plug u into the KdV
equation to obtain that ¢ must satisfy

—cd’ +6¢¢" + ¢ = 0. (2)

Derivation. First, using the chain rule,

up = %aﬁ(x —ct) = —c¢’

where the ’/, as in the problem statement, denotes the derivative with respect to the parameter of ¢,
which is s. Similarly, u, = ¢’ and vy, = ¢"’. Making these substitutions, along with u = ¢, in (?7?),
we obtain

—cd' + 699" 4 ¢ = 0.

Thus, since u satisfies (), we can find that by making the ansatz that u(z,t) has the form ¢(z — ct),
it satisfies exactly .

(b)
Anti-differentiate the equation found in (a), multiply the resulting equation by ¢’ and anti-differentiate
again to find that ¢ must satisfy

:_¢3+g¢2+A¢+B (3)
for some A and B.

Derivation. First, note that
1
¢¢' = (§¢2)/~
Now anti-differentiating with respect to s, we obtain

—cp+ 302+ ¢ +A=0.

Here, the coefficient of 3 came from 6 - %, and A is an arbitrary constant. Now multiplying through
by ¢, noticing that 3¢?¢' = (¢*)" and ¢”¢/ = (5(¢')?)’ and anti-differentiating again,
c /\2
¢3f§¢2+%+A¢+B:O.
Re-arranging, and re-labelling —A and —B as A and B (which we may do as they are arbitrary
constants), we obtain exactly (3).



(c)

We set A and B to be zero in the above, so we obtain

¢\ = —p\/c—2¢. (4)
Using separation of variables, show that
d¢
s+C=—- | — 5
W ()

where C' is arbitrary.

Derivation. Beginning with and writing it in a more suggestive form,

dg

oo =0V —20.

Re-arranging this and integrating both sides (as in separation of variables), we obtain

/¢ﬁif* /“'

The right-hand side evaluates to s + C for an arbitrary constant C, yielding exactly as required.

(d)

Use the substitution ¢ = fsech2(9) to show

s:<;)9—C (6)

Note that you can assume that ds%};(e) = —sech(f)tanh(f) and that 1 — sech?(f) = tanh?(6), and
that here tanh(6) > 0

Derivation. Using the given substitution in , we are essentially doing wu-substitution, so we
account for the fact that d¢ = § - 2sech(f) - —sech(#)tanh(0)df = —csech?(A)tanh(f). We then obtain

2
s+ C— / csech”(6)tanh(0) 4o,
2bech2 ¢(1 — sech?(0))

Simplifying and using the identity 1 — sech?(#) = tath(H)7 we obtain

Lo— / 2tanh(6
° \ftanh

Note that here we used the assumption that tanh(f) > 0 . We can simplify further to

s+C= /—d@

Now completing the integration on the right hand side (and noting that we obtain another arbitrary
constant of integration, so the following C' is technically not the same C though this does not matter

as it is arbitrary)
2
cC=|—)0.
o= ()

Re-arranging this immediately yields @ as required.



(e)

Use (d) and the definition of  to conclude that

o(s) = gsech2 (\f(s + C’)) (7)
and finally conclude that
u(z,t) = gsech2 <\f(x —ct+ C’)) . (8)
Conclusion. First re-arranging @ to obtain @ in terms of s, we have
0= g(s +0O).

Since ¢(s) = Ssech?(0), then

o) = et (S5 0)).

which verifies (7). Since at the outset we made the ansatz u(z,t) = ¢(x — ct), we replace s with
x — ct, and obtain

u(z — ct) = gsech2 <\f(x —ct+ 0)> :

verifying .



Problem 2

The purpose of this problem is to prove Stirling’s formula, or that n! ~ 2rn"tie™™ as n — oco.

(a)
Show using induction on n = 1,2, ... and integration by parts that (assuming the terms at ¢t = oo are
0)

/oo e~ 1dt = (n — 1), )
0

Proof. Base Case. We first show the required statement is true for n = 1. Plugging n = 1 into @,
we obtain fooo e~tdt on the left hand side and 0! = 1 on the right hand side. Indeed, these are equal,
as the left hand side evaluates to lim, oo (—e™%) + €% = 1.
Inductive Hypothesis. Suppose that @D is true for some arbitrary n € N.
Inductive Step. Given the inductive hypothesis is true, we aim to now show that @ holds for n + 1,
where this is the (arbitrary) n from the inductive hypothesis. Considering @ for n + 1 rather than
n, what we aim to show is that .

/ e "t"dt = nl.

0

Using integration by parts for the integral, where we are using v = t" and dv = e~'dt,
o0 o0
/ e thdt = —e 1P +n/ e " lat
0 0

o0
= n/ e~ ‘"~ 1dt due to our assumption and 0" =0 for n = 1,2, ...
0

= n(n — 1)! inductive hypothesis

=n!

Thus, we have shown the inductive step. Therefore, we may conclude that the desired identity holds
foralln=1,2,...

(b)

Use the substitution s = % to show the integral in @[) equals
° 1

nn/ efn(sfln(s))ids.
O S

Proof. Since s = t/n, ds = %du and we may rewrite (noting the bounds are still the same, as we
are just scaling by a constant factor)

(o) o0 1
/ et ldt = / e " (sn)" = ds
0 0 n

o0
n”/ e Mg s
0

S
1
— nn/ e—n(s—ln(s))ids
0

S

as claimed.

(c)
The general Laplace method says that: If ¢ is a smooth function that has a max at o with ¢’(z¢) =0

and ¢"(z¢) < 0, and a(z) is any smooth function (not necessarily with compact support), then, as
e—0

/0 a(x)ed)(f)dx: |(ZS,?(L;O)‘e@a(m‘o)(l—|—0(1)).



Apply the general Laplace method to the integral in (b) with ¢ = % as well as the result in (a) to

show that as n — oo,
(n—1)!

n'fL

= V2" 2e (1 + o(1)).

Proof. First, we justify our application of Laplace’s method. We identify ¢ = %, so that € — 0 is
equivalent to n — co. Next, we identify a(z) with  (the variable of integration is s), and ¢(z) with
—(s —1In(s)). Indeed, % is smooth on (0,00) (the singularity at zero should not be an issue because
the integral is still well-defined and we will not be evaluating a at zero, as we will see). Similarly,
—(s —In(s)) is smooth on (0,00). To maximize this function, we differentiate and set —1 + 1 =0,
so we find s = 1 is the maximizer. The other properties in the hypothesis of the function follow
immediately, and we have also verified xg # 0.
Now, applying the method, we have that

© 1 27
—n(s—ln(s))id _ n¢(1) (1 +o(1
e S = e a (0]

We compute: ¢(1) = —1, ¢”(1) = —(1)72 = —1, a(1) = 1, hence

o 1 2m
7n(sfln(s))7d — e (1 1
/0 e S ds \/ e (1+0(1))

Using the result from (a) to replace the integral on the left, noting that due to (b) it is in particular

equal to (";nl)!, we obtain

=Dl fomn2e (1 1 o(1))

n'r’L

as required.

(d)

Multiply the above identity by n on both sides and conclude using the definition of ~ that
nl ~ V2T,
Conclusion. Multiplying through by n, since n(n — 1)! = nl,

!
™ VornEe (1 + o(1)).
nn
Multiplying through by n™, )

n! = V2"t 2e7"(1 4 o(1)).
We can see that |

A e T = o) =1

since a function f(n) being o(1) means lim, _,~ f(n) = 0. Thus, according to the definition of ~, we

may conclude
1
nl ~V2mn"tze ",



