APMA 1941G Homework 3

Lulabel Ruiz Seitz

February 12, 2024

Problem 1

The purpose of this problem is to derive an explicit solution of a KdV equation. Consider the following equation

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{1}
\end{equation*}
$$

where $u=u(x, t), x \in \mathbb{R}, t>0$.

(a)

Suppose u has the form $u(x, t)=\phi(x-c t)$ for some $c \in \mathbb{R}$ and some $\phi=\phi(s)$. Plug u into the KdV equation to obtain that ϕ must satisfy

$$
\begin{equation*}
-c \phi^{\prime}+6 \phi \phi^{\prime}+\phi^{\prime \prime \prime}=0 \tag{2}
\end{equation*}
$$

Derivation. First, using the chain rule,

$$
u_{t}=\frac{\partial}{\partial t} \phi(x-c t)=-c \phi^{\prime}
$$

where the ${ }^{\prime}$, as in the problem statement, denotes the derivative with respect to the parameter of ϕ, which is s. Similarly, $u_{x}=\phi^{\prime}$ and $u_{x x x}=\phi^{\prime \prime \prime}$. Making these substitutions, along with $u=\phi$, in (??), we obtain

$$
-c \phi^{\prime}+6 \phi \phi^{\prime}+\phi^{\prime \prime \prime}=0
$$

Thus, since u satisfies (1), we can find that by making the ansatz that $u(x, t)$ has the form $\phi(x-c t)$, it satisfies exactly (2).

(b)

Anti-differentiate the equation found in (a), multiply the resulting equation by ϕ^{\prime} and anti-differentiate again to find that ϕ must satisfy

$$
\begin{equation*}
\frac{\left(\phi^{\prime}\right)^{2}}{2}=-\phi^{3}+\frac{c}{2} \phi^{2}+A \phi+B \tag{3}
\end{equation*}
$$

for some A and B.
Derivation. First, note that

$$
\phi \phi^{\prime}=\left(\frac{1}{2} \phi^{2}\right)^{\prime} .
$$

Now anti-differentiating (22 with respect to s, we obtain

$$
-c \phi+3 \phi^{2}+\phi^{\prime \prime}+A=0
$$

Here, the coefficient of 3 came from $6 \cdot \frac{1}{2}$, and A is an arbitrary constant. Now multiplying through by ϕ^{\prime}, noticing that $3 \phi^{2} \phi^{\prime}=\left(\phi^{3}\right)^{\prime}$ and $\phi^{\prime \prime} \phi^{\prime}=\left(\frac{1}{2}\left(\phi^{\prime}\right)^{2}\right)^{\prime}$ and anti-differentiating again,

$$
\phi^{3}-\frac{c}{2} \phi^{2}+\frac{\left(\phi^{\prime}\right)^{2}}{2}+A \phi+B=0 .
$$

Re-arranging, and re-labelling $-A$ and $-B$ as A and B (which we may do as they are arbitrary constants), we obtain exactly (3).
(c)

We set A and B to be zero in the above, so we obtain

$$
\begin{equation*}
\phi^{\prime}=-\phi \sqrt{c-2 \phi} . \tag{4}
\end{equation*}
$$

Using separation of variables, show that

$$
\begin{equation*}
s+C=-\int \frac{d \phi}{\phi \sqrt{c-2 \phi}} \tag{5}
\end{equation*}
$$

where C is arbitrary.
Derivation. Beginning with (4) and writing it in a more suggestive form,

$$
\frac{d \phi}{d s}=-\phi \sqrt{c-2 \phi}
$$

Re-arranging this and integrating both sides (as in separation of variables), we obtain

$$
-\int \frac{d \phi}{\phi \sqrt{c-2 \phi}}=\int d s
$$

The right-hand side evaluates to $s+C$ for an arbitrary constant C, yielding exactly (5) as required.

(d)

Use the substitution $\phi=\frac{c}{2} \operatorname{sech}^{2}(\theta)$ to show

$$
\begin{equation*}
s=\left(\frac{2}{\sqrt{c}}\right) \theta-C \tag{6}
\end{equation*}
$$

Note that you can assume that $\frac{d \operatorname{sech}(\theta)}{d \theta}=-\operatorname{sech}(\theta) \tanh (\theta)$ and that $1-\operatorname{sech}^{2}(\theta)=\tanh ^{2}(\theta)$, and that here $\tanh (\theta) \geq 0$.

Derivation. Using the given substitution in (5), we are essentially doing u-substitution, so we account for the fact that $d \phi=\frac{c}{2} \cdot 2 \operatorname{sech}(\theta) \cdot-\operatorname{sech}(\theta) \tanh (\theta) d \theta=-c \operatorname{sech}^{2}(\theta) \tanh (\theta)$. We then obtain

$$
s+C=\int \frac{\operatorname{csech}^{2}(\theta) \tanh (\theta)}{\frac{c}{2} \operatorname{sech}^{2}(\theta) \sqrt{c\left(1-\operatorname{sech}^{2}(\theta)\right)}} d \theta
$$

Simplifying and using the identity $1-\operatorname{sech}^{2}(\theta)=\tanh ^{2}(\theta)$, we obtain

$$
s+C=\int \frac{2 \tanh (\theta)}{\sqrt{c} \tanh (\theta)} d \theta
$$

Note that here we used the assumption that $\tanh (\theta) \geq 0$. We can simplify further to

$$
s+C=\int \frac{2}{\sqrt{c}} d \theta
$$

Now completing the integration on the right hand side (and noting that we obtain another arbitrary constant of integration, so the following C is technically not the same C though this does not matter as it is arbitrary)

$$
s+C=\left(\frac{2}{\sqrt{c}}\right) \theta
$$

Re-arranging this immediately yields (6) as required.
(e)

Use (d) and the definition of θ to conclude that

$$
\begin{equation*}
\phi(s)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(s+C)\right) \tag{7}
\end{equation*}
$$

and finally conclude that

$$
\begin{equation*}
u(x, t)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(x-c t+C)\right) . \tag{8}
\end{equation*}
$$

Conclusion. First re-arranging (6) to obtain θ in terms of s, we have

$$
\theta=\frac{\sqrt{c}}{2}(s+C) .
$$

Since $\phi(s)=\frac{c}{2} \operatorname{sech}^{2}(\theta)$, then

$$
\phi(s)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(s+C)\right),
$$

which verifies (7). Since at the outset we made the ansatz $u(x, t)=\phi(x-c t)$, we replace s with $x-c t$, and obtain

$$
u(x-c t)=\frac{c}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{c}}{2}(x-c t+C)\right),
$$

verifying (8).

Problem 2

The purpose of this problem is to prove Stirling's formula, or that $n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}$ as $n \rightarrow \infty$.

(a)

Show using induction on $n=1,2, \ldots$ and integration by parts that (assuming the terms at $t=\infty$ are $0)$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t} t^{n-1} d t=(n-1)! \tag{9}
\end{equation*}
$$

Proof. Base Case. We first show the required statement is true for $n=1$. Plugging $n=1$ into (9), we obtain $\int_{0}^{\infty} e^{-t} d t$ on the left hand side and $0!=1$ on the right hand side. Indeed, these are equal, as the left hand side evaluates to $\lim _{x \rightarrow \infty}\left(-e^{-x}\right)+e^{0}=1$.
Inductive Hypothesis. Suppose that (9) is true for some arbitrary $n \in \mathbb{N}$.
Inductive Step. Given the inductive hypothesis is true, we aim to now show that (9) holds for $n+1$, where this is the (arbitrary) n from the inductive hypothesis. Considering (9) for $n+1$ rather than n, what we aim to show is that

$$
\int_{0}^{\infty} e^{-t} t^{n} d t=n!
$$

Using integration by parts for the integral, where we are using $u=t^{n}$ and $d v=e^{-t} d t$,

$$
\begin{aligned}
\int_{0}^{\infty} e^{-t} t^{n} d t & =-\left.e^{-t} t^{n}\right|_{0} ^{\infty}+n \int_{0}^{\infty} e^{-t} t^{n-1} d t \\
& =n \int_{0}^{\infty} e^{-t} t^{n-1} d t \text { due to our assumption and } 0^{n}=0 \text { for } n=1,2, \ldots \\
& =n(n-1)!\text { inductive hypothesis } \\
& =n!
\end{aligned}
$$

Thus, we have shown the inductive step. Therefore, we may conclude that the desired identity holds for all $n=1,2, \ldots$

(b)

Use the substitution $s=\frac{t}{n}$ to show the integral in (9) equals

$$
n^{n} \int_{0}^{\infty} e^{-n(s-\ln (s))} \frac{1}{s} d s
$$

Proof. Since $s=t / n, d s=\frac{1}{n} d t$, and we may rewrite (noting the bounds are still the same, as we are just scaling by a constant factor)

$$
\begin{aligned}
\int_{0}^{\infty} e^{-t} t^{n-1} d t & =\int_{0}^{\infty} e^{-n s}(s n)^{n-1} \frac{1}{n} d s \\
& =n^{n} \int_{0}^{\infty} e^{-n s} s^{n-1} d s \\
& =n^{n} \int_{0}^{\infty} e^{-n(s-\ln (s))} \frac{1}{s} d s
\end{aligned}
$$

as claimed.
(c)

The general Laplace method says that: If ϕ is a smooth function that has a max at x_{0} with $\phi^{\prime}\left(x_{0}\right)=0$ and $\phi^{\prime \prime}\left(x_{0}\right)<0$, and $a(x)$ is any smooth function (not necessarily with compact support), then, as $\epsilon \rightarrow 0$

$$
\int_{0}^{\infty} a(x) e^{\frac{\phi(x)}{\epsilon}} d x=\sqrt{\frac{2 \pi \epsilon}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} e^{\frac{\phi\left(x_{0}\right)}{\epsilon}} a\left(x_{0}\right)(1+o(1))
$$

Apply the general Laplace method to the integral in (b) with $\epsilon=\frac{1}{n}$ as well as the result in (a) to show that as $n \rightarrow \infty$,

$$
\frac{(n-1)!}{n^{n}}=\sqrt{2 \pi} n^{-\frac{1}{2}} e^{-n}(1+o(1))
$$

Proof. First, we justify our application of Laplace's method. We identify $\epsilon \doteq \frac{1}{n}$, so that $\epsilon \rightarrow 0$ is equivalent to $n \rightarrow \infty$. Next, we identify $a(x)$ with $\frac{1}{s}$ (the variable of integration is s), and $\phi(x)$ with $-(s-\ln (s))$. Indeed, $\frac{1}{s}$ is smooth on $(0, \infty)$ (the singularity at zero should not be an issue because the integral is still well-defined and we will not be evaluating a at zero, as we will see). Similarly, $-(s-\ln (s))$ is smooth on $(0, \infty)$. To maximize this function, we differentiate and set $-1+\frac{1}{s}=0$, so we find $s=1$ is the maximizer. The other properties in the hypothesis of the function follow immediately, and we have also verified $x_{0} \neq 0$.

Now, applying the method, we have that

$$
\int_{0}^{\infty} e^{-n(s-\ln (s))} \frac{1}{s} d s=\sqrt{\frac{2 \pi}{\left|\phi^{\prime \prime}(1)\right| n}} e^{n \phi(1)} a(1)(1+o(1))
$$

We compute: $\phi(1)=-1, \phi^{\prime \prime}(1)=-(1)^{-2}=-1, a(1)=1$, hence

$$
\int_{0}^{\infty} e^{-n(s-\ln (s))} \frac{1}{s} d s=\sqrt{\frac{2 \pi}{n}} e^{-n}(1+o(1))
$$

Using the result from (a) to replace the integral on the left, noting that due to (b) it is in particular equal to $\frac{(n-1)!}{n^{n}}$, we obtain

$$
\frac{(n-1)!}{n^{n}}=\sqrt{2 \pi} n^{-1 / 2} e^{-n}(1+o(1))
$$

as required.
(d)

Multiply the above identity by n on both sides and conclude using the definition of \sim that

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Conclusion. Multiplying through by n, since $n(n-1)!=n$!,

$$
\frac{n!}{n^{n}}=\sqrt{2 \pi} n^{\frac{1}{2}} e^{-n}(1+o(1))
$$

Multiplying through by n^{n},

$$
n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}(1+o(1))
$$

We can see that

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}}=\lim _{n \rightarrow \infty} 1+o(1)=1
$$

since a function $f(n)$ being $o(1)$ means $\lim _{n \rightarrow \infty} f(n)=0$. Thus, according to the definition of \sim, we may conclude

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

