APMA 1941G - HOMEWORK 5

Problem 1: $(10=8+2$ points $)$
This problem refers to Example 1 "Rapidly Oscillating Coefficients"
(a) In lecture, we defined

$$
\bar{a}=\int_{0}^{1} a+2 w^{\prime} a+w a^{\prime} d y
$$

where $w=w(y)$ is the solution of $\left(\right.$ here $^{\prime}=\frac{d}{d y}$)

$$
\left\{\begin{array}{l}
-\left(a w^{\prime}\right)^{\prime}=a^{\prime} \\
w(0)=w(1)
\end{array}\right.
$$

Show that

$$
\bar{a}=\left(\int_{0}^{1} \frac{1}{a(y)} d y\right)^{-1}
$$

Hint:

- First solve the equation (\star) for w by antidifferentiating (be careful about the limits of integration). You may also assume that ${ }^{1]} w^{\prime}(0)=0$

[^0]- Then go back to the definition of \bar{a}, integrate by parts to write $w a^{\prime}$ in terms of $w^{\prime} a$ (why are the boundary-terms 0 ?), and use use your formula for w.
(b) [This should be quick] Using your formula for \bar{a} from (a), find the general solution of

$$
-\bar{a} u_{x x}^{0}=f(x)
$$

(don't worry about the periodicity for this part).

Note: The reason I put this part is to show you that in fact, one can find an explicit formula for our function u_{0}.

Problem 2: (10 points, 2.5 points each) This is pure ODE, but it's one of our steps in Example 2 "An Oscillator with Damping"
(a) Using undetermined coefficients, find a particular solution of

$$
w^{\prime \prime}(t)+w(t)=-\frac{1}{4} \cos (3 t)
$$

(b) Using undetermined coefficients, find a particular solution of

$$
v^{\prime \prime}(t)+v(t)=-\frac{3}{4} \cos (t)
$$

(c) Use $-\cos ^{3}(t)=-\frac{3}{4} \cos (t)-\frac{1}{4} \cos (3 t)$ to find the general sol of

$$
u_{1}^{\prime \prime}(t)+u_{1}(t)=-\cos ^{3}(t)
$$

(d) Find the solution of (c) that satisfies $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=0$

[^0]: ${ }^{1}$ This is not a very restrictive assumption actually, because by the assumption $w(0)=w(1)$ and Rolle's Theorem, there is a point x_{0} in $(0,1)$ such that $w^{\prime}\left(x_{0}\right)=0$, and you can easily adapt the proof you've given with this condition instead of $w^{\prime}(0)=0$

