APMA 1941G - HOMEWORK 6

Problem 1: $(10=2+4+4$ points $)$
Consider the equation

$$
\left\{\begin{array}{r}
u_{\epsilon}^{\prime \prime}+\epsilon u_{\epsilon}^{\prime}+u_{\epsilon}=0 \tag{1}\\
u_{\epsilon}(0)=1, u_{\epsilon}^{\prime}(0)=1
\end{array}\right.
$$

Apply the Ansatz

$$
u_{\epsilon}(t)=u_{0}(t, \epsilon t)+\epsilon u_{1}(t, \epsilon t)+\cdots
$$

Here $u_{\epsilon}=u_{\epsilon}(t)$ and $u_{k}=u_{k}(t, \tau)$ (here τ is a placeholder for ϵt)
(a) Show that $u^{0}(t, \tau)=A(\tau) \cos (t)+B(\tau) \sin (t)$
(b) Find an ODE for A and B and solve it, and use that to solve for $u_{0}(t)=u_{0}(t, \epsilon t)$. Impose the conditions $u_{0}(0)=1$ and $u_{0}^{\prime}(0)=1$

Hint: Select A and B to kill the resonance terms $\cos (t)$ and $\sin (t)$, just like we did for Duffing's equation
(c) Find the exact solution of the original ODE (1) and compare it with the solution u_{0} you found in (b). Do we have

$$
\lim _{\epsilon \rightarrow 0} u^{\epsilon}(t)=\lim _{\epsilon \rightarrow 0} u_{0}(t) ?
$$

Problem 2: $(10=5+5$ points) [The Inverted Pendulum Problem]
Consider the equation

$$
\theta_{\epsilon}^{\prime \prime}-\left[a+\frac{b}{\epsilon} \cos \left(\frac{t}{\epsilon}\right)\right] \sin \left(\theta_{\epsilon}\right)=0
$$

Where $a>0$ and $b>0$ are constants, and $\theta=\theta(t)$
Apply the Ansatz

$$
\theta_{\epsilon}(t)=\theta^{0}\left(t, \frac{t}{\epsilon}\right)+\epsilon \theta^{1}\left(t, \frac{t}{\epsilon}\right)+\cdots
$$

Where $\theta^{k}=\theta^{k}(t, \tau)$, and $\tau \mapsto \theta^{k}(t, \tau)$ is 2π periodic
(a) Show that θ does not depend on τ, that is $\theta^{0}=\theta^{0}(t)$

Hint: For the sin -term, use a (first-order) Taylor expansion at $\theta=\theta^{0}$ and $h=\epsilon \theta^{1}$. For the $\cos \left(\frac{t}{\epsilon}\right)$-term, leave it as it is and write it as $\cos (\tau)$ (in particular, do NOT expand it out!) Now once you get the $O\left(\frac{1}{\epsilon^{2}}\right)$-term, multiply your result by θ^{0} and integrate by parts with respect to τ on $[0,2 \pi]$, similarly to what we did in Example 1 (Homogenization). Why are there no boundary terms in the integration?
(b) Show that θ^{0} satisfies the ODE

$$
\theta_{t t}^{0}+\frac{b^{2}}{4} \sin \left(2 \theta^{0}\right)-a \sin \left(\theta^{0}\right)=0
$$

Hint: Here find the $O\left(\frac{1}{\epsilon}\right)$-terms and solve for θ^{1}. Your solution may involve constants $A=A(t)$ and $B=B(t)$. Set them
equal to 0 . Then, find the $O(1)-$ terms and integrate whatever you found with respect to τ from 0 to 2π. Also remember your formula for θ^{1}, and use that $\int_{0}^{2 \pi} \cos ^{2}(x) d x=\pi$ and that $\sin (2 x)=2 \sin (x) \cos (x)$

