APMA 1941G – HOMEWORK 6

Problem 1: (10 = 2 + 4 + 4 points)

Consider the equation

$$\begin{cases} u_{\epsilon}'' + \epsilon u_{\epsilon}' + u_{\epsilon} = 0\\ u_{\epsilon}(0) = 1, u_{\epsilon}'(0) = 1 \end{cases}$$
(1)

Apply the Ansatz

$$u_{\epsilon}(t) = u_0(t,\epsilon t) + \epsilon u_1(t,\epsilon t) + \cdots$$

Here $u_{\epsilon} = u_{\epsilon}(t)$ and $u_k = u_k(t, \tau)$ (here τ is a placeholder for ϵt)

- (a) Show that $u^0(t,\tau) = A(\tau)\cos(t) + B(\tau)\sin(t)$
- (b) Find an ODE for A and B and solve it, and use that to solve for $u_0(t) = u_0(t, \epsilon t)$. Impose the conditions $u_0(0) = 1$ and $u'_0(0) = 1$

Hint: Select A and B to kill the resonance terms cos(t) and sin(t), just like we did for Duffing's equation

(c) Find the exact solution of the original ODE (1) and compare it with the solution u_0 you found in (b). Do we have

$$\lim_{\epsilon \to 0} u^{\epsilon}(t) = \lim_{\epsilon \to 0} u_0(t)?$$

Problem 2: (10 = 5 + 5 points) [The Inverted Pendulum Problem]

Consider the equation

$$\theta_{\epsilon}'' - \left[a + \frac{b}{\epsilon}\cos\left(\frac{t}{\epsilon}\right)\right]\sin(\theta_{\epsilon}) = 0$$

Where a > 0 and b > 0 are constants, and $\theta = \theta(t)$

Apply the Ansatz

$$\theta_{\epsilon}(t) = \theta^{0}\left(t, \frac{t}{\epsilon}\right) + \epsilon \,\theta^{1}\left(t, \frac{t}{\epsilon}\right) + \cdots$$

Where $\theta^k = \theta^k(t, \tau)$, and $\tau \mapsto \theta^k(t, \tau)$ is 2π periodic

(a) Show that θ does not depend on τ , that is $\theta^0 = \theta^0(t)$

Hint: For the sin – term, use a (first-order) Taylor expansion at $\theta = \theta^0$ and $h = \epsilon \theta^1$. For the $\cos\left(\frac{t}{\epsilon}\right)$ -term, leave it as it is and write it as $\cos(\tau)$ (in particular, do **NOT** expand it out!) Now once you get the $O\left(\frac{1}{\epsilon^2}\right)$ –term, multiply your result by θ^0 and integrate by parts with respect to τ on $[0, 2\pi]$, similarly to what we did in Example 1 (Homogenization). Why are there no boundary terms in the integration?

(b) Show that θ^0 satisfies the ODE

$$\theta_{tt}^0 + \frac{b^2}{4}\sin(2\theta^0) - a\sin(\theta^0) = 0$$

Hint: Here find the $O\left(\frac{1}{\epsilon}\right)$ –terms and solve for θ^1 . Your solution may involve constants A = A(t) and B = B(t). Set them

equal to 0. Then, find the O(1)-terms and integrate whatever you found with respect to τ from 0 to 2π . Also remember your formula for θ^1 , and use that $\int_0^{2\pi} \cos^2(x) dx = \pi$ and that $\sin(2x) = 2\sin(x)\cos(x)$