Homework 5 Solutions

1. The roots are (from the order the terms are listed):

- $r=0$, repeated twice
- $r=-4$, repeated three times
- $r=-7$
- $r= \pm 3 i$, repeated three times $\left(r^{2}+9=0 \Rightarrow r=\sqrt{-9}\right)$
- $r=-1 \pm 3 i$, repeated twice $\left(r^{2}+2 r+10=0\right.$, use quadratic formula)

We can use this to compose the general solution:

$$
\begin{gathered}
y(t)=A+B t+C e^{-4 t}+D t e^{-4 t}+E t^{2} e^{-4 t}+F e^{-7 t} \\
+G \cos (3 t)+H \sin (3 t)+I t \cos (3 t)+J t \sin (3 t)+K t^{2} \cos (3 t)+L t^{2} \sin (3 t) \\
+M e^{-t} \cos (3 t)+N e^{-t} \sin (3 t)+O e^{-t} t \cos (3 t)+P e^{-t} t \sin (3 t)
\end{gathered}
$$

2. Auxiliary equation: $r^{2}=\lambda$

Case 1: $\lambda>0$
Because λ is positive,

$$
r^{2}=\lambda \Longrightarrow \pm \sqrt{\lambda}
$$

If we let $\omega=\sqrt{\lambda}$, then

$$
r= \pm \omega
$$

This gives the general solution

$$
y(t)=A e^{\omega t}+B e^{-\omega t}
$$

Using the initial condition,

$$
\begin{aligned}
y(3)=0 & \Longrightarrow A e^{3 \omega}+B e^{-3 \omega}=0 \\
& \Longrightarrow B=-A e^{6 \omega}
\end{aligned}
$$

so

$$
\begin{gathered}
y(t)=A e^{\omega t}-A e^{6 \omega} e^{-\omega t} \\
\Longrightarrow y^{\prime}(t)=A \omega e^{\omega t}+A e^{6 \omega} \omega e^{-\omega t}
\end{gathered}
$$

Using the other initial condition,

$$
\begin{aligned}
y^{\prime}(0)= & \Longrightarrow A \omega e^{0}+A e^{6 \omega} \omega e^{0}=0 \\
& \Longrightarrow A \omega+A e^{6 \omega} \omega=0
\end{aligned}
$$

$$
\Longrightarrow A \omega\left(1+e^{6 \omega}\right)=0
$$

Because $\left(1+e^{6 \omega}\right)$ must be positive, this implies either that $\omega=0$ or that $A=0$. The former contradicts our assumption that $\lambda>0$, because $\omega=\sqrt{\lambda}>0$. Therefore, we must have $A=0$, and so our solution becomes $y(t)=0$. Thus we have no nonzero solutions in the $\lambda>0$ case.
Case 2: $\lambda=0$ In this case, the auxiliary equation $r^{2}=0$ has a repeated root at 0 , so the general solution is

$$
y(t)=A+B t .
$$

Using the initial conditions,

$$
\begin{gathered}
y(3)=0 \Longrightarrow 0=A+3 B \\
\Longrightarrow A=-3 B \\
\Longrightarrow y(t)=-3 B+B t \\
\Longrightarrow y^{\prime}(t)=B \\
y^{\prime}(0)=0 \Longrightarrow B=0,
\end{gathered}
$$

so we have $y(t)=0$ and thus there are no nozero solutions in this case.
Case 3: $\lambda<0$
Because $\lambda<0, r= \pm \sqrt{\lambda}$ is imaginary, so there exists some positive real ω such that $r= \pm \omega i$. Our general solution is then

$$
y(t)+A \cos (\omega t)+B \sin (\omega t) .
$$

Using the initial condition,

$$
\begin{aligned}
y(3) & =0 \Longrightarrow A \cos (3 \omega)+B \sin (3 \omega)=0 \\
& \Longrightarrow A \cos (3 \omega)=-B \sin (3 \omega)
\end{aligned}
$$

We also have that

$$
y^{\prime}(t)=-A \omega \sin (\omega t)+B \omega \cos (\omega t)
$$

so using the other initial condition,

$$
\begin{aligned}
y^{\prime}(0)=0 \Longrightarrow & -A \omega \sin (0)+B \omega \cos (0)=0 \\
& \Longrightarrow B \omega=0
\end{aligned}
$$

and because $\omega \neq 0$ this implies that $B=0$. Substituting this into our earlier equation, we have that

$$
\begin{gathered}
A \cos (3 \omega)=0 \\
\Longrightarrow \cos (3 \omega)=0 .
\end{gathered}
$$

Cosine vanishes for arguments $n \pi / 2$ where n is odd, equivalently when $n=2 m+1$ for $m \in\{0,1,2, \ldots\}$. Therefore,

$$
\begin{gathered}
3 \omega=(2 m+1) \frac{\pi}{2} \\
\Longrightarrow \omega=(2 m+1) \frac{\pi}{6} \\
\Longrightarrow \lambda=-\omega^{2}=-\left((2 m+1) \frac{\pi}{6}\right)^{2} .
\end{gathered}
$$

Finally, we have that the eigenvalues are

$$
\lambda=-\left((2 m+1) \frac{\pi}{6}\right)^{2}
$$

with corresponding eigenfunctions

$$
y=\cos (\omega t)=\cos \left((2 m+1) \frac{\pi}{6} t\right)
$$

for $m \in\{0,1,2, \ldots\}$.
3. First solve the complementary solution:

$$
\begin{gathered}
r^{2}=5 r+4=0 \\
\Longrightarrow r=4,1 \\
\Longrightarrow y_{c}=C_{1} e^{4 t}+C_{2} e^{t} .
\end{gathered}
$$

For the particular solution, we guess the form:

$$
y_{p}=A \cos (2 t)+B \sin (2 t)
$$

Plugging this into the ODE:

$$
\begin{gathered}
y_{p}^{\prime \prime}-5 y_{p}^{\prime}+4 y_{p}=20 \cos (2 t)+30 \sin (t) \\
\Longrightarrow-4 y_{p}+10 A \sin (2 t)-10 B \cos (2 t)+4 y_{p}=20 \cos (2 t)+30 \sin (2 t) . \\
\Longrightarrow 10 A \sin (2 t)-10 B \cos (2 t)=20 \cos (2 t)+30 \sin (2 t) .
\end{gathered}
$$

For this to match, we must have $A=3$ and $B=-2$, so

$$
y_{p}=3 \cos (2 t)-2 \sin (2 t)
$$

Our general solution is

$$
\begin{gathered}
y(t)=y_{c}+y_{p} \\
=C_{1} e^{4 t}+C_{2} e^{t}+3 \cos (2 t)-2 \sin (2 t)
\end{gathered}
$$

Using the initial condition $y(0)=1$, we have

$$
C_{1}+C_{2}+3=1
$$

$$
\begin{equation*}
\Longrightarrow C_{1}=-2-C_{2} . \tag{1}
\end{equation*}
$$

Using the other initial condition $y^{\prime}(0)=3$, we have

$$
\begin{gathered}
4 C_{1} e^{0}+C_{2} e^{0}-6 \sin (0)-4 \cos (0)=3 \\
\Longrightarrow 4 C_{1}+C_{2}-4=3
\end{gathered}
$$

and substituting (1) into this, we get

$$
\begin{gathered}
4\left(-2-C_{2}\right)+C_{2}-4=3 \\
\Longrightarrow-8-3 C_{2}-4=3 \\
\Longrightarrow C_{2}=-5,
\end{gathered}
$$

and substituting this into the earlier equation we have $C_{1}=3$. Therefore, our solution is

$$
y(t)=3 e^{4 t}-5 e^{t}+3 \cos (2 t)-2 \sin (2 t)
$$

4. (a) For the homogeneous solutions, the auxiliary equation is

$$
\begin{gathered}
r^{2}-3 r+2=0 \\
\Longrightarrow r=1,2
\end{gathered}
$$

So we can't guess $A e^{t}$, instead we guess $A t e^{t}$.
(b) First let us check if $e^{2 t}$ coincides with the homogeneous solution:

$$
\begin{gathered}
r^{2}-3 r+2=0 \\
\Longrightarrow r=1,2
\end{gathered}
$$

It dues coincide, so we need to multiply our guess by t :

$$
y_{p}=\left(e^{2 t} t\right)\left(A t^{2}+B t+C\right)
$$

(c)

$$
y_{p}=A \sin (2 t)+B \cos (2 t)
$$

(d) Check if it does or does not coincide:

$$
\begin{gathered}
r^{2}-2 r+5=0 \\
\Longrightarrow r=1 \pm 2 i
\end{gathered}
$$

This does coindcide, so we guess

$$
y_{p}=A t e^{t} \cos (2 t)+B t e^{t} \sin (2 t)
$$

(e)
5. (a)

$$
\begin{aligned}
& \left(D^{2}-4 D+4 I\right)(y)=e^{t} \\
\Longrightarrow & (D-2 I)(D-2 I)(y)=E^{t}
\end{aligned}
$$

If we let $z=(D-2 I)(y)$, then we have

$$
\begin{aligned}
& (D-2 I)(z)=e^{t} \\
& \Longrightarrow z^{\prime}-2 z=e^{t} .
\end{aligned}
$$

We can use integrating factors to solve this. The integrating factor is

$$
e^{\int-2 t d}=e^{-2 t}
$$

so we get

$$
e^{-2 t} z^{\prime}-e^{-2 t} 2 z=\left(e^{-2 t} z\right)^{\prime}=e^{-2 t} e^{t}=e^{-t}
$$

Integrating both sides,

$$
\begin{gathered}
e^{-2 t} z=-e^{-t}+C_{1} \\
z=\frac{-e^{-t}}{e^{-2 t}}+\frac{C_{1}}{e^{-2 t}} \\
=-e^{t}+C_{1} e^{2 t}
\end{gathered}
$$

But $z=(D-2 I)(y)=y^{\prime}-2 y$, so

$$
y^{\prime}-2 y=-e^{t}+C_{1} e^{2 t}
$$

Using the same integrating factor $e^{-2 t}$,

$$
e^{-2 t} y^{\prime}-2 e^{-2 t} y=\left(e^{-2 t} y\right)=-e^{-t}+C_{1}
$$

and by integrating both sides we get

$$
\begin{gathered}
e^{-2 t} y=e^{-t}+C_{1} t+C_{2} \\
\Longrightarrow y=e^{t}+C_{1} t e^{2 t}+C_{2} e^{2 t} .
\end{gathered}
$$

(b)

$$
\begin{aligned}
& \left(D^{2}-5 D+6 I\right)(y)=e^{3 t} \\
\Longrightarrow & (D-3)(D-2)(y)=e^{3 t}
\end{aligned}
$$

If we let $z=(D-2)(y)$, then we have

$$
\begin{aligned}
(D-3)(z) & =e^{3 t} \\
\Longrightarrow z^{\prime}-3 z & =e^{3 t}
\end{aligned}
$$

We can solve this with integrating factors:

$$
\begin{gathered}
e^{\int-3 d t}=e^{-3 t} \\
\Longrightarrow\left(e^{-3 t} z\right)^{\prime}=1
\end{gathered}
$$

Integrating both sides gives us

$$
\begin{gathered}
e^{-2 t} z=t+C_{1} \\
\Longrightarrow z=e^{3 t} t+C_{1} e^{3 t} .
\end{gathered}
$$

But $z=(D-2)(y)=y^{\prime}-2 y$, so we have

$$
y^{\prime}-2 y=e^{3 t} t+C_{1} e^{3 t}
$$

Again using integrating factors:

$$
\begin{aligned}
e^{\int-2 d t} & =e^{-2 t} \\
\Longrightarrow\left(e^{-2 t} y\right)^{\prime} & =e^{t} t+C_{1} e^{t}
\end{aligned}
$$

and integrating both sides:

$$
\begin{gathered}
e^{-2 t} y=(t-1) e^{t}+C_{1} e^{t}+C_{2} \\
\Longrightarrow y=e^{3 t}(t-1)+C_{1} e^{3 t}+C_{2} e^{2 t}
\end{gathered}
$$

6. We can set up this problem as:

$$
\left\{\begin{array}{l}
2 y^{\prime \prime}+2 y^{\prime}+y=0 \\
y(0)=5 \\
y^{\prime}(0)=3
\end{array}\right.
$$

The term $2 y^{\prime \prime}$ is $F=m a$, the $2 y^{\prime}$ term is damping, and the coefficient of 1 on the y term is due to the spring constant of 1 . The auxiliary equation is

$$
2 r^{2}+2 r+1=0
$$

Using the quadratic formula, we get

$$
\begin{aligned}
r & =\frac{-2 \pm 2 i}{4} \\
\Longrightarrow r & =-\frac{1}{2} \pm \frac{1}{2} i,
\end{aligned}
$$

which gives us the solution:

$$
y(t)=A e^{-\frac{1}{2} t} \cos \left(\frac{1}{2} t\right)+B e^{-\frac{1}{2} t} \sin \left(\frac{1}{2} t\right) .
$$

Using the position initial conditions:

$$
\begin{gathered}
y(0)=5 \\
\Longrightarrow A=5 .
\end{gathered}
$$

Tp use the velocity initial condition, we must take the derivative of our solution:

$$
\begin{gathered}
y^{\prime}(t)=-\frac{1}{2} A e^{-\frac{1}{2} t} \sin \left(\frac{1}{2} t\right)-\frac{1}{2} A e^{-\frac{1}{2} t} \cos \left(\frac{1}{2} t\right) \\
+\frac{1}{2} B e^{-\frac{1}{2} t} \cos \left(\frac{1}{2} t\right)-\frac{1}{2} B e^{-\frac{1}{2} t} \sin \left(\frac{1}{2} t\right) \\
y^{\prime}(0)=0 \Longrightarrow-\frac{1}{2} A+\frac{1}{2} B=0 \\
\Longrightarrow-\frac{5}{2}+\frac{1}{2} B=3 \\
\Longrightarrow B=11
\end{gathered}
$$

Therefore, our solution is

$$
y(t)=5 e^{-\frac{1}{2} t} \cos \left(\frac{1}{2} t\right)+11 e^{-\frac{1}{2} t} \sin \left(\frac{1}{2} t\right) .
$$

We see that this is an oscillating but decaying solution. The damping is an energy sink in our system, and without a force term, damping will take our system into an intertial state.

