APMA 0350 - HOMEWORK 6

Problem 1: (4 points, 2 points each) Use variation of parameters to find the general solution of the following ODE. Simplify your answers.
(a) $t^{2} y^{\prime \prime}+4 t^{2} y^{\prime}+4 t^{2} y=e^{-2 t}$
(b) $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}$

Note: For (b) assume t and $t e^{t}$ are solutions of the hom. equation
Problem 2: (4 points, 2 points each)
Find the general solution of $y^{\prime \prime}+y=\cos (t)$
(a) Using undetermined coefficients
(b) Using variation of parameters

Make sure your answers match

Problem 3: (2 points, Mini Theory)

In this problem, we'll rederive the Var of Par equations, but for

$$
y^{\prime \prime}-5 y^{\prime}+6 y=f(t)
$$

Where $f(t)$ is an inhomogeneous term
Recall that the hom. solution is $y_{0}=A e^{2 t}+B e^{3 t}$ (TURN PAGE)

Variation of Parameters: Suppose y_{p} is of the form

$$
y_{p}=u(t) e^{2 t}+v(t) e^{3 t}
$$

And suppose for simplicity that

$$
e^{2 t} u^{\prime}(t)+e^{3 t} v^{\prime}(t)=0
$$

Calculate $\left(y_{p}\right)^{\prime}$ and $\left(y_{p}\right)^{\prime \prime}$ and plug into the ODE to show

$$
\left(2 e^{2 t}\right) u^{\prime}(t)+\left(3 e^{3 t}\right) v^{\prime}(t)=f(t)
$$

Problem 4: (2 points) Use tabular integration to find $\mathcal{L}\left\{t^{2}\right\}$
Problem 5: (2 points) Use complex exponentials to find

$$
\mathcal{L}\{\cos (3 t)\} \text { and } \mathcal{L}\{\sin (3 t)\}
$$

Problem 6: (2 points) Find examples of functions $f(t)$ and $g(t)$ with

$$
\mathcal{L}\{f(t) g(t)\} \neq \mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

Most guesses should work, but try out constant/exponential functions
Problem 7: (4 points) Use Laplace Transforms to solve

$$
\left\{\begin{aligned}
y^{\prime \prime}+9 y & =\cos (2 t) \\
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}\right.
$$

