APMA 0359 - Homework 6 Solutions

October 22, 2023

1. Use variation of parameters to find the general solution of the following ODE. Simplify your answers.
(a) $t^{2} y^{\prime \prime}+4 t^{2} y^{\prime}+4 t^{2} y=e^{-2 t}$

Solution: First, we put the ODE into standard form:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 t}}{t^{2}}
$$

Next, we find the homogenous solution:

$$
y^{\prime \prime}+t y^{\prime}+4 y=0
$$

Our characteristic equation is

$$
r^{2}+4 y+4=0 \Longrightarrow(r+2)^{2}=0
$$

Thus, we have

$$
y_{0}=A e^{-2 t}+B t e^{-2 t}
$$

We guess y_{p} will be of the same form,

$$
y_{p}=u(t) e^{-2 t}+v(t) t e^{-2 t}
$$

Thus, using the Wronskian we get the new set of equations

$$
\left[\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 e^{-2 t} t
\end{array}\right]\left[\begin{array}{c}
u^{\prime}(t) \\
v^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{e^{-2 t}}{t^{2}}
\end{array}\right] .
$$

Solving with Cramer's rule, we get

$$
\begin{gathered}
u^{\prime}(t)=\frac{\left[\begin{array}{cc}
0 & t e^{-2 t} \\
\frac{e^{-2 t}}{t^{2}} & e^{-2 t}-2 e^{-2 t} t
\end{array}\right]}{\left[\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 e^{-2 t} t
\end{array}\right]}=\frac{0-\left(t e^{-2 t}\right)\left(\frac{e^{-2 t}}{t^{2}}\right)}{\left(e^{-2 t}\right)\left(e^{-2 t}-2 e^{-2 t} t\right)-\left(-2 e^{-2 t} t e^{-2 t}\right)}=\frac{e^{-4 t} / t}{e^{-4 t}}=\frac{-1}{t} \\
v^{\prime}(t)=\frac{\left[\begin{array}{cc}
e^{-2 t} & 0 \\
-2 e^{-2 t} & \frac{e^{-2 t}}{t^{2}}
\end{array}\right]}{\left[\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 e^{-2 t} t
\end{array}\right]}=\frac{e^{-2 t}\left(\frac{e^{-2 t} t^{2}}{)}-0\right.}{e^{-4 t}}=\frac{e^{-4 t} / t^{2}}{e^{-4 t}}=\frac{1}{t^{2}} .
\end{gathered}
$$

Solving for $u(t)$ and $v(t)$, we find

$$
u(t)=-\int t^{-1} d t=-\ln |t|
$$

and

$$
v(t)=\int t^{-2} d t=-\frac{1}{t}
$$

Thus, we have that

$$
y(t)=y_{0}+y_{p}=A e^{-2 t}+B t e^{-2 t}+\ln |t| e^{-2 t}-\frac{t e^{-2 t}}{t}=D e^{-2 t}+B t e^{-2 t}-\ln |t| e^{-2 t} .
$$

(b) $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}$

Solution: We first put the ODE into the standard form,

$$
y^{\prime \prime}-\frac{(t+2)}{t} y^{\prime}+\frac{(t+2)}{t^{2}} y=2 t .
$$

We are assuming t and $t e^{t}$ are solutions to the homogenou sequations. THus,

$$
y_{0}=A t+B t e^{t} .
$$

We guess the same form for y_{p}, where

$$
y_{p}=u(t) t+v(t) t e^{t} .
$$

We get the system of equations

$$
\left[\begin{array}{cc}
t & t e^{t} \\
1 & e^{t}+t e^{t}
\end{array}\right]\left[\begin{array}{c}
u^{\prime}(t) \\
v^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 t
\end{array}\right] .
$$

Using Cramer's rule, we obtain

$$
u^{\prime}(t)=\frac{\left[\begin{array}{cc}
0 & t e^{t} \\
2 t & e^{t}+t e^{t}
\end{array}\right]}{\left[\begin{array}{cc}
t & t e^{t} \\
1 & e^{t}+t e^{t}
\end{array}\right]}=\frac{0-2 t^{2} e^{t}}{t e^{t}+t^{2} e^{t}-t e^{t}}=\frac{-2 t^{2} e^{t}}{t^{2} e^{t}}=-2 .
$$

and

$$
v^{\prime}(t)=\frac{\left[\begin{array}{cc}
t & 0 \\
1 & 2 t
\end{array}\right]}{\left[\begin{array}{cc}
t & t e^{t} \\
1 & e^{t}+t e^{t}
\end{array}\right]}=\frac{2 t^{2}-0}{t e^{t}+t^{2} e^{t}-t e^{t}}=\frac{2 t^{2}}{t^{2} e^{t}}=\frac{2}{e^{t}}=2 e^{t} .
$$

Thus, we solve to find

$$
u(t)=\int-2 d t=-2 t
$$

and

$$
v(t)=2 \int e^{-t} d t=-2 e^{-t} .
$$

Thus, we have that

$$
y(t)=y_{0}+y_{p}=A t+B t e^{t}-2 t^{2}-2 t=D t+B t e^{t}-2 t^{2} .
$$

2. Find the general solution of $y^{\prime \prime}+y=\cos (t)$
(a) Using undetermined coefficients

Solution: We first solve for the homogenous equation,

$$
y^{\prime \prime}+y=\cos (t)
$$

Thus, we have that

$$
r^{2}+1=0 \Longrightarrow r= \pm i
$$

and we get the homogenous solution

$$
y_{0}=A \cos (t)+B \sin (t) .
$$

Since we have $\cos (t)$ in the homogenous, we must write our particular solution as

$$
y_{p}=A t \cos (t)+B t \sin (t)
$$

We then find

$$
\begin{aligned}
& y_{p}^{\prime}=A(\cos (t)-t \sin (t))+B(\sin (t)+t \cos (t)) \\
& =A \cos (t)-A t \sin (t)+B \sin (t)+B t \cos (t)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{p}^{\prime \prime} & =-A \sin (t)-A(\sin (t)+t \cos (t))+B \cos (t)+B(\cos (t)-t \sin (t)) \\
& =-A \sin (t)-A \sin (t)-A t \cos (t)+B \cos (t)+B \cos (t)-B t \sin (t) \\
& =2 B \cos (t)-2 A \sin (t)-A t \cos (t)-B t \sin (t)
\end{aligned}
$$

Using $y_{p}^{\prime \prime}+y_{p}=\cos (t)$, we have

$$
2 B \cos (t)-2 A \sin (t)=\cos (t) \Longrightarrow B=\frac{1}{2}, A=0
$$

Therefore, we arrive at the solution

$$
y(t)=A \cos (t)+B \sin (t)+\frac{t}{2} \sin (t) .
$$

(b) Using variation of parameters

Solution: We obtain the same homogenous equation as above,

$$
y_{0}=\cos (t)+B \sin (t)
$$

Thus, we also have that

$$
y_{p}=u(t) \cos (t)+v(t) \sin (t) .
$$

Thus, we get the system of equations

$$
\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{c}
u^{\prime}(t) \\
v^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right] .
$$

Using Cramer's rule, we obtain

$$
\begin{gathered}
u^{\prime}(t)=\frac{\left[\begin{array}{cc}
0 & \sin (t) \\
\cos (t) & \cos (t)
\end{array}\right]}{\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]}=\frac{0-\sin (t) \cos (t)}{\cos ^{2}(t)+\sin ^{2}(t)}=\frac{-\sin (t) \cos (t)}{1}=-\sin (t) \cos (t) \\
v^{\prime}(t)=\frac{\left[\begin{array}{cc}
\cos (t) & 0 \\
-\sin (t) & \cos (t)
\end{array}\right]}{\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]}=\frac{\cos ^{2}(t)-0}{1}=\cos ^{2}(t)
\end{gathered}
$$

We solve

$$
u(t)=-\int \sin (t) \cos (t) d t
$$

By letting $u=\cos (t)$ and $d u=-\sin (t) d t$, we find

$$
\int u d u=\frac{u^{2}}{2} \Longrightarrow u(t)=\frac{\cos ^{2}(t)}{2}
$$

Next, we solve for

$$
\begin{aligned}
v(t) & =\int \cos ^{2}(t) d t \\
& =\frac{1}{2} \cos (2 t)+\frac{1}{2} d t \\
& =\frac{1}{2} \cos (2 t) d t+\int \frac{1}{2} d t \\
& =\frac{\sin (2 t)}{4}+\frac{t}{2} \\
& =\frac{1}{2}(t+\sin (t) \cos (t))
\end{aligned}
$$

Thus, using $\cos ^{2}(t)=1-\sin ^{2}(t)$, we have

$$
y_{p}=\frac{\cos ^{3}(t)}{2}+\frac{1}{2}(t+\sin (t) \cos (t)) \sin (t)=\frac{1}{2}(\cos (t)+t \sin (t))
$$

Therefore,

$$
y=A \cos (t)+B \sin (t)+\frac{\cos (t)}{2}+\frac{t \sin (t)}{2}=D \cos (t)+B \sin (t)+\frac{t \sin (t)}{2}
$$

and our solutions match.
3. In this problem, we'll rederive the Var of Par equtions, but for

$$
y^{\prime \prime}-5 y^{\prime}+6 y=f(t)
$$

where $f(t)$ is an inhomogenous term. Recall that the homogenous solution is $y_{0}=A e^{2 t}+B e^{3 t}$.

Variation of Parameters: Suppose y_{p} is of the form

$$
y_{p}=u(t) e^{2 t}+v(t) e^{3 t}
$$

and suppose for simplicity that

$$
e^{2 t} u^{\prime}(t)+e^{3 t} v^{\prime}(t)=0
$$

Calculate $\left(y_{p}\right)^{\prime}$ and $\left(y_{p}\right)^{\prime \prime}$ and plug into the ODE to show

$$
\left(2 e^{2 t}\right) u^{\prime}(t)+\left(3 e^{3 t}\right) v^{\prime}(t)=f(t)
$$

Solution: We first find

$$
\begin{aligned}
y_{p}^{\prime} & =\frac{d}{d t}\left(u(t) e^{2 t}+v(t) e^{3 t}\right) \\
& =u^{\prime}(t) e^{2 t}+2 e^{2 t} u(t)+v^{\prime}(t) e^{3 t}+2 e^{3 t} v(t) \\
& =2 u(t) e^{2 t}+3 v(t) e^{3 t}
\end{aligned}
$$

Next, we find

$$
\begin{aligned}
y_{p}^{\prime \prime}=\frac{d}{d t}\left(y_{p}^{\prime}\right) & =2\left(u^{\prime}(t) e^{2 t}+2 e^{2 t} u(t)\right)+3\left(v^{\prime}(t) e^{3 t}+3 e^{3 t} v(t)\right) \\
& =2 u^{\prime}(t) e^{2 t}+4 e^{2 t}+4 e^{2 t} u(t)+3 v^{\prime}(t) e^{3 t}+9 e^{3 t} v(t)
\end{aligned}
$$

Plugging into $y^{\prime \prime}-5 y^{\prime}+6 y=f(t)$, we find

$$
\begin{array}{rlrl}
f(t)=2 u^{\prime}(t) e^{2 t} & +4 e^{2 t} u(t)+3 v^{\prime}(t) e^{3 t} & +9 e^{3 t} v(t) \\
& -10 e^{2 t} u(t) & & -15 e^{2 t} v(t) \\
& +6 u(t) e^{2 t} & & +6 e^{3 t} v(t)
\end{array}
$$

Thus, we found that

$$
f(t)=2 u^{\prime}(t) e^{2 t}+3 v^{\prime}(t) e^{3 t}
$$

4. Use tabular integration to find $\mathcal{L}\left\{t^{2} 2\right\}$

Solution: We apply tabular integration by writing

	Differentiate		Integrate
+	t^{2}	\searrow	$e^{-s t}$
-	$2 t$	\searrow	$-e^{-s t} / s$
+	2	\searrow	$e^{-s t} / s^{2}$
-	0	\searrow	$-e^{-s t} / s^{3}$

Thus, we have

$$
\mathcal{L}\left(t^{2}\right)=\int_{0}^{\infty} t^{2} e^{-s t} d t=\left[-\frac{t^{2} e^{-s t}}{s}-\frac{2 t e^{-s t}}{s^{2}}-\frac{2 e^{-s t}}{s^{3}}\right]_{0}^{\infty}=\frac{2}{s^{3}}
$$

5. Use complex exponentials to find

$$
\mathcal{L}\{\cos (3 t)\} \text { and } \mathcal{L}\{\sin (3 t)\}
$$

Solution: Euler's formula tells us that $e^{-x}=\cos (x)+i \sin (x)$.
Thus,

$$
\cos (3 t)=\frac{e^{3 i t}+e^{-3 i t}}{2} \text { and } \sin (3 t)=\frac{e^{3 i t}-e^{-3 i t}}{2 i}
$$

We calculate the transforms as

$$
\begin{aligned}
\mathcal{L}(\cos (3 t)) & =\mathcal{L}\left(\frac{e^{3 i t}+e^{-3 i t}}{2}\right) \\
& =\frac{1}{2} \int_{0}^{\infty}\left(e^{(3 i-s) t}+e^{-3 i-s) t}\right) d t \\
& \left.=\frac{1}{2}\left[\frac{e^{(3 i-s) t}}{3 i-s}+\frac{e^{(-3 i-s) t}}{-3 i-s}\right]\right]_{0}^{\infty} \\
& =\frac{s}{s^{2}+9}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\mathcal{L}(\sin (3 t)) & =\frac{1}{2 i} \int_{0}^{\infty}\left(e^{(3 i-s) t}+e^{(-3 i-s) t}\right) \\
& =\frac{3}{s^{2}+9}
\end{aligned}
$$

6. Find examples of functions $f(t)$ and $g(t)$ with

$$
\mathcal{L}\{f(t) g(t)\} \neq \mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

Most guesses should work, but try out constant/exponential functions.

Solution: Following the hint, we use $f(t)=t$ and $g(t)=c$, where c is a constant. Then, we find

$$
\mathcal{L}(f(t) g(t))=\mathcal{L}(c t)=\frac{c}{s^{2}} \neq \frac{c}{s^{3}}=\frac{1}{s^{2}} \frac{c}{s}=\mathcal{L}(t) \mathcal{L}(c)=\mathcal{L}(f(t)) \mathcal{L}(g(t))
$$

7. Use Laplace Transforms to solve

$$
\left\{\begin{array}{l}
y^{\prime \prime}+9 y=\cos (2 t) \\
y(0)=1 \\
y^{\prime}(0)=0
\end{array}\right.
$$

Solution: We take the transform of the equation to find

$$
\mathcal{L}\left(y^{\prime \prime}\right)+9 \mathcal{L}(y)=2(\cos (2 t))
$$

We call $\mathcal{L}=Y(s)$.
Then, we get

$$
s^{2} Y(s)-s y(0)+9 Y(s)=\frac{s}{s^{2}+4}
$$

Factoring and using the initial condition, we get

$$
\left(s^{2}+9\right) Y(s)-s=\frac{s}{s^{2}+4}
$$

Thus, we see that

$$
Y(s)=\frac{s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}+\frac{s}{\left(s^{2}+9\right)}=\frac{s^{3}+5 s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}
$$

We use partial fraction decomposition and find

$$
\begin{aligned}
Y(s) & =\frac{(A s+B)}{s^{2}+4}+\frac{(c s+D)}{s^{2}+9} \\
& =\frac{A s^{3}+9 A s+B s^{2}+9 B+C s^{3}+4 C s+D s^{2}+4 D}{\left(s^{2}+4\right)\left(s^{2}+9\right)}
\end{aligned}
$$

Setting the numerators equal, we find

$$
B=0, D=0, A+C=1 \text { and } 9 A+4 C=5 \Longrightarrow C=-4 / 5, A=1 / 5
$$

Thus,

$$
Y(s)=\frac{s}{5\left(s^{2}+4\right)}+\frac{4 s}{5\left(s^{2}+9\right)}
$$

So taking the inverse of the Laplace transform, we find

$$
y(t)=\frac{1}{5} \cos (2 t)+\frac{4}{5} \cos (3 t)
$$

