LECTURE: COMPLEX ROOTS

1. Quick Facts about Complex Numbers

Definition:

$$
i=\sqrt{-1}
$$

This implies that $i^{2}=-1$
From this you can create complex numbers like $2+3 i$

Definition: (Real and Imaginary Parts)

$$
\operatorname{Re}(2+3 i)=2 \quad \operatorname{Im}(2+3 i)=3
$$

We can generalize exponential functions to include complex numbers:

Definition:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

Example 1:

$$
e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+0 i=-1
$$

This gives what some people call the most beautiful formula in math:

$$
e^{i \pi}+1=0
$$

Notice it relates the 5 most important constants of math: $0,1, e, \pi, i \odot$

2. Complex Roots

Video: Complex Roots

Example 2:

$$
y^{\prime \prime}+y=0
$$

$$
\text { Aux: } \quad r^{2}+1=0 \Rightarrow r^{2}=-1 \Rightarrow r= \pm \sqrt{-1} \Rightarrow r= \pm i
$$

This means that:

$$
y=A e^{i t}+B e^{-i t}
$$

Question: How to get real solutions from this?

$$
\begin{aligned}
y & =A(\cos (t)+i \sin (t))+B(\cos (-t)+i \sin (-t)) \\
& =A \cos (t)+i A \sin (t)+B \cos (t)-i B \sin (t) \\
& =\underbrace{(A+B)}_{A} \cos (t)+\underbrace{i(A-B)}_{B} \sin (t)
\end{aligned}
$$

Since A and B are arbitrary, so are $A+B$ and $i(A-B)$ and so

$$
y=A \cos (t)+B \sin (t)
$$

Note: Here A and B are complex coefficients, which is not a big problem because in our examples below we will get real constants.

But if you really want to get real solutions you can proceed as follows:
First write $A=A_{1}+i A_{2}$ and $B=B_{1}+i B_{2}$ and split up into real and imaginary parts as follows:

$$
\begin{aligned}
y & =A \cos (t)+B \sin (t) \\
& =\left(A_{1}+i A_{2}\right) \cos (t)+\left(B_{1}+i B_{2}\right) \sin (t) \\
& =\left(A_{1} \cos (t)+B_{1} \sin (t)\right)+i\left(A_{2} \cos (t)+B_{2} \sin (t)\right)
\end{aligned}
$$

Now take real parts on both sides:

$$
\operatorname{Re}(y)=A_{1} \cos (t)+B_{1} \sin (t)
$$

But since y is a real solution, we have $\operatorname{Re}(y)=y$ and so we get

$$
y=A_{1} \cos (t)+B_{1} \sin (t)
$$

Where A_{1} and B_{1} are arbitrary real constants

Example 3:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+6 y^{\prime}+10 y=0 \\
y(0)=1 \\
y^{\prime}(0)=-4
\end{array}\right.
$$

Auxiliary equation:

$$
\begin{aligned}
r^{2}+6 r+10 & =0 \\
(r+3)^{2}-9+10 & =0 \\
(r+3)^{2} & =-1 \\
r+3 & = \pm \sqrt{-1}= \pm i \\
r & =-3 \pm i
\end{aligned}
$$

$$
\text { Mnemonic: } e^{(-3+i) t}=e^{-3 t} e^{i t}=e^{-3 t} \cos (t)+i e^{-3 t} \sin (t)
$$

You could repeat the process above, or just go directly to

$$
y=A e^{-3 t} \cos (t)+B e^{-3 t} \sin (t)
$$

$$
\begin{aligned}
y(0) & =1 \\
A e^{0} \cos (0)+B e^{0} \sin (0) & =1 \\
A+0 & =1 \\
A & =1
\end{aligned}
$$

$$
y=e^{-3 t} \cos (t)+B e^{-3 t} \sin (t)
$$

$$
y^{\prime}(t)=-3 e^{-3 t} \cos (t)+e^{-3 t}(-\sin (t))-3 B e^{-3 t} \sin (t)+B e^{-3 t} \cos (t)
$$

$$
\begin{gathered}
y^{\prime}(0)=-4 \\
-3 e^{0} \cos (0)-e^{0}(\sin (0))-3 B e^{0} \sin (0)+B e^{0} \cos (0)=-4 \\
-3+0-0+B=-4 \\
-3+B=-4 \\
B=-4+3=-1 \\
y=e^{-3 t} \cos (t)-e^{-3 t} \sin (t)
\end{gathered}
$$

Solution gets damped quite quickly because of the $e^{-3 t}$ term.

Example 4: (more practice)

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =0 \\
y(0) & =3 \\
y^{\prime}(0) & =-4
\end{aligned}\right.
$$

$$
\text { Aux: } \begin{aligned}
r^{2}+4 & =0 \Rightarrow r^{2}=-4 \Rightarrow r= \pm \sqrt{-4}= \pm 2 i \\
e^{2 i t} & =e^{(2 t) i}=\cos (2 t)+i \sin (2 t)
\end{aligned}
$$

$$
\begin{aligned}
& y=A \cos (2 t)+B \sin (2 t) \\
& y(0)=3 \\
& A \cos (0)+B \sin (0)=3 \\
& A(1)+B(0)=3 \\
& A=3 \\
& y^{\prime}=(A \cos (2 t)+B \sin (2 t))^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t) \\
& y^{\prime}(0)=-4 \\
&-2 A \sin (0)+2 B \cos (0)=-4 \\
&-2 A(0)+2 B(1)=-4 \\
& 2 B=-4 \\
& B=-2 \\
& y=3 \cos (2 t)-2 \sin (2 t)
\end{aligned}
$$

Example 5: (more practice)

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

$$
\begin{gathered}
r^{2}-4 r+13=0 \\
(r-2)^{2}-4+13=0 \\
(r-2)^{2}=-9 \\
r-2= \pm \sqrt{-9}= \pm 3 i \\
r=2 \pm 3 i \\
e^{(2+3 i) t}=e^{2 t} e^{3 t i}=e^{2 t} \cos (3 t)+i e^{2 t} \sin (3 t) \\
y=A e^{2 t} \cos (3 t)+B e^{2 t} \sin (3 t) \\
\hline
\end{gathered}
$$

The $e^{2 t}$ term causes the oscillations to blow up and the $\cos (3 t)$ term makes things oscillate fast.

3. Summary

To summarize, there are 3 possible scenarios for the auxiliary equation:

Example 6: (more practice)

(a) Distinct Roots

$$
\begin{gathered}
y^{\prime \prime}-5 y^{\prime}+6 y=0 \Rightarrow r^{2}-5 r+6 \Rightarrow r=2 \text { or } r=3 \\
y=A e^{2 t}+B e^{3 t}
\end{gathered}
$$

(b) Complex Roots

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+13 y=0 \Rightarrow r^{2}-4 r+13=0 \Rightarrow r=2 \pm 3 i \\
y=A e^{2 t} \cos (3 t)+B e^{2 t} \sin (3 t)
\end{gathered}
$$

(c) Repeated Roots

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=0 \Rightarrow r^{2}-2 r+1=0 \Rightarrow r=1 \\
y=A e^{t}+B t e^{t}
\end{gathered}
$$

Note: For higher order equations, it's pretty much exactly the same:

Example 7:

Solve the ODE whose auxiliary equation is

$$
r(r-1)(r-2)^{3}\left(r^{2}-4 r+13\right)^{2}=0
$$

$r=0, r=1, r=2$ (repeated 3 times), $r=2 \pm 3 i$ (repeated twice):

$$
\begin{aligned}
y & =\underbrace{A e^{0 t}}_{A}+B e^{t}+C e^{2 t}+D t e^{2 t}+E t^{2} e^{2 t} \\
& +F e^{2 t} \cos (3 t)+G e^{2 t} \sin (3 t)+H t e^{2 t} \cos (3 t)+I t e^{2 t} \sin (3 t)
\end{aligned}
$$

4. Boundary-Value Problems

Video: Boundary-Value Problems

This is a nice application of the techniques we have learned so far, and will be super useful if you ever take PDE

Example 8:

Find the values of λ for which the ODE has nonzero solutions

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y(0) & =0 \\
y(\pi) & =0
\end{aligned}\right.
$$

Remarks:

(1) Before we had initial conditions like $y(0)=3$ and $y^{\prime}(0)=-4$ but now we have boundary conditions where we specify the values $y(0)$ and $y(\pi)$ at the endpoints of the interval $[0, \pi]$
(2) Application: Here $y(t)$ represents the temperature of a metal rod. The boundary conditions mean that we insulate the rod to have temperature 0 at the endpoints

Auxiliary Equation: $r^{2}=\lambda$
The behavior of the solutions depends on the sign of λ, so it makes sense to split this into 3 cases.

Case 1: $\lambda>0$
Notice that if $\lambda>0$ then $\lambda=\omega^{2}$ for some $\omega>0$, this avoids nasty square roots

Ex: If $\lambda=9=3^{2}$, then $\omega=3$
Aux: $r^{2}=\lambda=\omega^{2} \Rightarrow r= \pm \omega$ in which case we get

$$
y=A e^{\omega t}+B e^{-\omega t}
$$

$$
\begin{aligned}
& y(0)=A e^{0}+B e^{0}=A+B=0 \Rightarrow B=-A \\
& y=A e^{\omega t}-A e^{-\omega t} \\
& y(\pi)=0 \\
& A e^{\omega \pi}-A e^{-\omega \pi}=0 \\
& A e^{\omega \pi}=A e^{-\omega \pi} \\
& \omega \pi=-\omega \pi \\
& 2 \pi \omega=0 \\
& \omega=0
\end{aligned}
$$

(Can cancel out A because if $A=0$ then $y=0$ but want $\neq 0$ solutions)
But then $\lambda=\omega^{2}=0^{2}=0$, which contradicts $\lambda>0 \Rightarrow \Leftarrow$
Conclusion: In this case, we have no nonzero solutions
Case 2: $\lambda=0$
Aux: $r^{2}=0 \Rightarrow r=0$ (repeated twice)

$$
\begin{gathered}
y=A e^{0 t}+B t e^{0 t}=A+B t \\
y(0)=A+B(0)=A=0 \\
y=B t \\
y(\pi)=0 \Rightarrow B \pi=0 \Rightarrow B=0
\end{gathered}
$$

But then $y=0 t=0 \Rightarrow \Leftarrow$ (since we want nonzero solutions)
Conclusion: In this case, we also have no nonzero solutions

Case 3: $\lambda<0$
(To be continued next time)

