APMA 0350 - MIDTERM 1

Name	
Brown ID	
Signature	

1. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
t^{2}\left(y^{\prime}\right)-(2 t) y & =t^{5} \cos (t) \quad t>0 \\
y(\pi) & =0
\end{aligned}\right.
$$

$$
y=\mid
$$

2. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
y^{\prime} & =\frac{\sin ^{-1}(t)}{y \sqrt{1-t^{2}}} \\
y(0) & =-2
\end{aligned}\right.
$$

Note: $\left(\sin ^{-1}(t)\right)^{\prime}=\frac{1}{\sqrt{1-t^{2}}}$ and $\sin ^{-1}(0)=0$
\square
$y=$
3. (5 points) Solve the ODE, leave your answer in implicit form

$$
\left\{\begin{array}{c}
\left(\frac{\sin (y)}{y}-2 e^{-x} \sin (x)\right) d x+\left(\frac{\cos (y)+2 e^{-x} \cos (x)}{y}\right) d y=0 \\
y(0)=\pi
\end{array}\right.
$$

Hint: Multiply your ODE by $y e^{x}$ and then check for exactness
Answer \square
4. (5 points) Solve the ODE whose auxiliary equation is $-2(r+2) r^{3}(r-1)^{4}(r-2)\left(r^{2}-9 r+20\right)^{2}\left(r^{2}+9\right)\left(r^{2}-4 r+13\right)^{2}=0$

Note: You do not need to write down the ODE

5. (5 points) Let $h(t)$ be the height of a jumping bunny after t minutes, where $h(t)$ is in meters

Thumper's law of motion states that the rate of change of the height is proportional to the reciprocal of height squared

Initially, the height is 1 m and after 1 min the height is 4 m . What is the height at $t=20$ seconds?
Height \quad
(Scratch Paper)

