APMA 0350 - MIDTERM 2 - STUDY GUIDE

This is the study guide for the exam, and is just meant to be a guide to help you study, just so we're on the same place in terms of expectations. Think of it more as a course summary rather than "this is exactly the questions I'm going to ask you on the exam."

There will be NO coding on the exam, but there might be proofs, like on the homework

Format: There are 4 questions on the exam, all of them free response, no multiple choice. Two questions will be about second-order ODE and two questions will be about Laplace transforms.

A Laplace transform table will be provided, see course website. No need to print it out. You're also allowed one 2 -sided 8.5×11 cheat sheet

Useful trig identities to know:

(1) $\sin ^{2}(x)+\cos ^{2}(x)=1$
(2) $1+\tan ^{2}(x)=\sec ^{2}(x)$
(3) $\cos (-x)=\cos (x), \sin (-x)=-\sin (x)$
(4) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x), \sin (2 x)=2 \sin (x) \cos (x)$
(5) $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x), \sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$

Useful integration techniques to know:

(1) Integrals of sin, cos, tan, sec
(2) $\int \frac{1}{x^{2}+1} d x=\tan ^{-1}(x)+C$
(3) u-substitution
(4) Integration by parts, but I'll only ask you about easy cases like $\int x e^{x} d x$
(5) $\int \cos ^{2}(x) d x, \int \sin ^{2}(x) d x$; check out this video in case you forgot
(6) You need to know partial fractions to do Laplace transforms

$$
\text { Second-Order ODE (Lectures } 11 \text { - 18) }
$$

- Solve $a y^{\prime \prime}+b y^{\prime}+c y=0$ using the method with $D y=y^{\prime}$ There are also some nice variations of this on the homework, with repeated roots and inhomogeneous equations
- Solve $a y^{\prime \prime}+b y^{\prime}+c y=0$ using auxiliary equations
- I could ask you about higher order differential equations, but in that case would give you the roots beforehand
- Find the eigenvalues and eigenfunctions of the boundary-value problem $y^{\prime \prime}=\lambda y$ The lecture notes and the homework problem give you more or less all possible cases. Don't forget to check what the starting value of m is.
- Use undetermined coeffs to find a particular solution to a ODE:
- Rule 1: If the right hand side is $e^{r t}$ guess $A e^{r t}$
- Rule 2: If the right hand side is a polynomial like t^{2} you guess $A t^{2}+B t+C$ (the most general version)
- Rule 3: cos goes with sin and vice-versa
- If the root of the right-hand-side coincides with the root of y_{0}, then there is resonance and you add an extra t
- The section on mechanical vibrations is just practice with the techniques. You don't need to know the physical background and you don't need to know the formulas for amplitude
- Solve an ODE using variation of parameters and make sure that the coefficient of $y^{\prime \prime}$ is 1
- Be able to rederive the var of par formula. I've done an example of that in lecture and there is also one on your homework.

Laplace Transform (Lectures 19 - 25)

- Find $\mathcal{L}\{f(t)\}$ using the definition of Laplace transform.
- I recommend the method of Tabular integration, it allows you to calculate $\mathcal{L}\left\{t^{4}\right\}$ very quickly. Here is an example of this method.
- Prove the formulas for $\mathcal{L}\left\{f^{\prime}(t)\right\}$ and $\mathcal{L}\left\{f^{\prime \prime}(t)\right\}$
- Solve a second-order ODE using Laplace transforms. I could ask you zero or nonzero initial conditions. Notice that the auxiliary equation should appear somewhere in your calculation
- Write a given function in terms of step functions u_{c}. The jumps could be constants, or entire functions.
- Find the Laplace transform of u_{c}, and know the formula

$$
\mathcal{L}\left\{f(t-c) u_{c}(t)\right\}=e^{-c s} \mathcal{L}\{f(t)\}
$$

- This also works in reverse, for example $e^{-5 s} \mathcal{L}\left\{t^{3}\right\}=\mathcal{L}\left\{(t-5)^{3} u_{5}(t)\right\}$
- Find the laplace transform of $e^{2 t} \sin (3 t)$ where you "shift" the Laplace transform.
- Also know how to do it in reverse, like find a function whose Laplace transform is $\frac{1}{(s-2)^{2}+1}$
- This sometimes requires to complete the square, like $s^{2}+4 s+5=$ $(s+2)^{2}+1$
- You may have to combine both, like the $\frac{3(s-2) e^{-3 s}}{s^{2}-4 s+5}$ example from lecture.
- Solve ODEs with jumps. This means first write $f(t)$ in terms of jump functions (if not already done) and take Laplace transforms
- Feel free to write your solutions in terms of $h(t)$, like in lecture, but you need to define what $h(t)$ is!
- Solve ODE involving Dirac Delta
- The definition of convolution will be provided but know that $\mathcal{L}\{f \star g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}$
- Find the Laplace transform of a function that is written as a convolution, like the Laplace transform of $\int_{0}^{t}(t-\tau)^{2} e^{\tau} d \tau$
- Find an inverse Laplace transform and express your answer as an integral, like the inverse Laplace transform of $\left(\frac{1}{s^{2}+1}\right)\left(\frac{1}{s^{2}+4}\right)$. I would explicitly tell you "Leave your solution as an integral"
- Use Laplace transforms and convolution to solve an ODE in terms of integrals. An excellent example is $y^{\prime \prime}-4 y^{\prime}+4 y=\tan (t)$ I would explicitly tell you "Leave your solution as an integral"
- Solve integral equations and integro-differential equations (see lecture)
- Solve the integral question with

$$
\int_{0}^{1} x^{3}(1-x)^{7} d x
$$

