APMA 0350 - PROGRAMMING ASSIGNMENT 2

Instructions: In the problems below, please take a screenshot of your code and your result/plot, and include it in your assignment.

Problem 1: (4 points) Use the dsolve command in Python to solve

$$
2 y^{\prime \prime}+4 y^{\prime}+y=0
$$

Problem 2: (4 points) Use the dsolve command in Python to solve and plot for $-20 \leq t \leq 1$

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=2 e^{3 t}+2 t+6 \cos (t) \\
y(0)=1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

Problem 3: (4 points) Use Python to find the Laplace transform of

$$
e^{2 t}+4 t^{3}
$$

Problem 4: (4 points) Use Python to find a function whose Laplace transform is

$$
\frac{2(s-1) e^{-3 s}}{s^{2}-2 s+2}
$$

Problem 5: (4 points) Use the dsolve command in Python to solve and plot for $0 \leq t \leq 10$

$$
\left\{\begin{aligned}
y^{\prime \prime}+9 y & =u_{3}(t)-2(t-5) u_{5}(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}\right.
$$

Note: Python uses Heaviside $(t-3)$ instead of $u_{3}(t)$. You might see a θ as part of your answer. This means Heaviside as well.

Here you can find some sample code that helps you solve the problems:

Sample Code 1:

The following code finds and plots the solution of the following ODE for $0 \leq t \leq 10$

$$
\left\{\begin{aligned}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \\
y(0) & =1 \\
y^{\prime}(0) & =-3
\end{aligned}\right.
$$

```
from sympy import *
from matplotlib import pyplot as plt
t=symbols('t')
y=Function('y')
ysoln=dsolve(diff(y(t),t,2)-5*diff(y(t),t)+6*y(t),y(t),
ics={y(0):1,\operatorname{diff(y(t),t).subs(t,0):-3})}
print(ysoln)
```

yoft=ysoln.rhs
plot(yoft,(t,0,10))

Sample Code 2:

The following code finds the Laplace transform of $\cos (3 t)+5 t^{2}$
from sympy import *

```
s,t=symbols('s t',positive="True")
\(f=\cos (3 * t)+5 * t * * 2\)
laplace_transform(f,t,s) [0]
```


Sample Code 3:

The following code finds a function whose Laplace transform is $\frac{1-e^{-2 s}}{s^{2}}$
from sympy import *
s,t=symbols('s t', positive=True)
$\mathrm{F}=(1-\exp (-2 * s)) / s * * 2$
inverse_laplace_transform (F,s,t)

