APMA 1941G Homework 4 Solutions Lulabel Ruiz Seitz

February 18, 2024

Problem 1

Suppose ϕ has a global max at 0 with $\phi(0)=0, \phi^{\prime}(0)=0, \phi^{\prime \prime}(0)=-1$, and $\phi^{\prime \prime \prime}(0)=0$. Let $a(x) \equiv 1$ and consider

$$
I[\epsilon]=\int_{\mathbb{R}} e^{\frac{\phi(x)}{\epsilon}} d x
$$

Show that

$$
I[\epsilon] \sim \sqrt{2 \pi \epsilon}+\frac{\sqrt{2 \pi}}{8} \phi^{\prime \prime \prime \prime}(0) \epsilon^{3 / 2}+o\left(\epsilon^{3 / 2}\right)
$$

assuming that

$$
\left(L_{0}(a)\right)(0)=a(0)=\sqrt{\frac{2 \pi}{\left|\phi^{\prime \prime}(0)\right|}}=\sqrt{2 \pi}
$$

and that

$$
C_{2}=\int_{\mathbb{R}} x^{2} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}
$$

Proof. Since the desired asymptotic expansion features an $o\left(\epsilon^{3 / 2}\right)$ term, per the Laplace Method, we only need to calculate through $k=2$, so we only need to calculate $\left(L_{2} a\right)(0)$ and ($\left.L_{4} a\right)(0)$ (our indexing is by $2 k$). Then, as discussed in class,

$$
\begin{equation*}
I[\epsilon] \sim L_{0}(a)(0) \sqrt{\epsilon}+L_{2}(a)(0) \epsilon+L_{4}(a)(0) \epsilon^{3 / 2}+o\left(\epsilon^{3 / 2}\right) \tag{1}
\end{equation*}
$$

where

$$
L_{2}(a)(0)=(\tilde{a})^{\prime}(0) C_{1} \text { and } L_{4}(a)(0)=\frac{(\tilde{a})^{\prime \prime}(0)}{2} C_{2}
$$

and, as in class (using the same notation),

$$
\tilde{a}(y)=a(\psi(y)) \eta(\psi(y)) \psi^{\prime}(y)
$$

Since $a(x) \equiv 1$, we can simplify

$$
\tilde{a}(y)=\eta(\psi(y)) \psi^{\prime}(y) .
$$

The first derivative of \tilde{a} is given by

$$
\begin{equation*}
\tilde{a}^{\prime}(y)=\eta^{\prime}(\psi(y))\left(\psi^{\prime}(y)\right)^{2}+\psi^{\prime \prime}(y) \eta(\psi(y)) \tag{2}
\end{equation*}
$$

and the second derivative is given by

$$
\begin{equation*}
\tilde{a}^{\prime \prime}(y)=\eta^{\prime}(\psi(y)) 2 \psi^{\prime}(y) \psi^{\prime \prime}(y)+\left(\psi^{\prime}(y)\right)^{2} \eta^{\prime \prime}(\psi(y)) \psi^{\prime}(y)+\psi^{\prime \prime}(y) \eta^{\prime}(\psi(y)) \psi^{\prime}(y)+\eta(\psi(y)) \psi^{\prime \prime \prime}(y) \tag{3}
\end{equation*}
$$

Recall that we derived in class that $\psi(0)=0, \eta(0)=1$, and $\psi^{\prime}(0)=\frac{1}{\sqrt{\left|\phi^{\prime \prime}(0)\right|}}$. Since by assumption, $\phi^{\prime \prime}(0)=-1$, then $\psi^{\prime}(0)=1$. Similar to what we did in class, we determine $\psi^{\prime \prime}(y)$ by further differentiating $\phi^{\prime}(\psi(y)) \psi^{\prime}(y)=-y$. Differentiating this one time, as in class, we obtain.

$$
\phi^{\prime \prime}(\psi(y))\left(\psi^{\prime}(y)\right)^{2}+\phi^{\prime}(\psi(y)) \psi^{\prime \prime}(y)=-1
$$

Now differentiating this once further, we obtain

$$
\begin{equation*}
\phi^{\prime \prime \prime}(\psi(y))\left(\psi^{\prime}(y)\right)^{3}+2 \psi^{\prime}(y) \psi^{\prime \prime}(y) \phi^{\prime \prime}(\psi(y))+\phi^{\prime}(\psi(y)) \psi^{\prime \prime \prime}(y)+\psi^{\prime \prime}(y) \phi^{\prime \prime}(\psi(y)) \psi^{\prime}(y)=0 . \tag{4}
\end{equation*}
$$

Evaluating at $y=0$ and noting that $\psi(0)=0, \phi^{\prime \prime}(0)=-1$, and $\phi^{\prime \prime \prime}(0)=0$, we obtain the equation

$$
0+2 \cdot 1 \cdot \psi^{\prime \prime}(0) \cdot-1+0+\psi^{\prime \prime}(0) \cdot-1 \cdot 1=0
$$

We may then conclude that $\psi^{\prime \prime}(0)=0$. The only other information we need in order to evaluate $\tilde{a}^{\prime}(0)$, per (2), is about $\eta^{\prime}(\psi(0))=\eta^{\prime}(0)$. Yet, since $\eta=1$ in $(-\delta, \delta)$, we know that $\eta^{\prime}(0)=\eta^{\prime \prime}(0)=0$. We can then evaluate

$$
\tilde{a}^{\prime}(0)=\eta^{\prime}(0)+0=0 .
$$

With this computed, we turn to $\tilde{a}^{\prime \prime}(0)$. From (3), what we have already computed, and our assumptions:

$$
\tilde{a}^{\prime \prime}(0)=0+\eta^{\prime \prime}(0)+\psi^{\prime \prime \prime}(0)=\psi^{\prime \prime \prime}(0) .
$$

We then need to find $\psi^{\prime \prime \prime}(0)$. We can further differentiate (4) in order to find $\psi^{\prime \prime \prime}(0)$. In the following, ellipses signify terms that we can immediately see will be zero when evaluated at zero (for the sake of brevity):

$$
\begin{aligned}
\phi^{\prime \prime \prime \prime}(\psi(y)) & \left(\psi^{\prime}(y)\right)^{4}+3\left(\psi^{\prime}(y)\right)^{2} \psi^{\prime \prime}(y) \phi^{\prime \prime \prime}(\psi(y))+2 \psi^{\prime \prime}(y) \ldots+2 \psi^{\prime}(y) \phi^{\prime \prime}(\psi(y)) \psi^{\prime \prime \prime}(y) \\
& +\phi^{\prime}(\psi(y)) \ldots+\psi^{\prime \prime \prime}(y) \cdot \phi^{\prime \prime}(\psi(y)) \cdot \psi^{\prime}(y)+\psi^{\prime \prime}(y) \ldots+\phi^{\prime \prime}(\psi(y)) \psi^{\prime}(y) \psi^{\prime \prime \prime}(y)=0 .
\end{aligned}
$$

At zero, since $\psi(0)=0, \psi^{\prime}(0)=1$, and $\psi^{\prime \prime}(0)=0$, we obtain

$$
\phi^{\prime \prime \prime}(0)+0+0+2 \cdot-1 \cdot \psi^{\prime \prime \prime}(y)+0+\psi^{\prime \prime \prime}(y) \cdot-1 \cdot 1+0-\psi^{\prime \prime \prime}(y)=0
$$

so

$$
\psi^{\prime \prime \prime}(0)=\frac{\phi^{\prime \prime \prime \prime}(0)}{4}
$$

We then have that

$$
\tilde{a}^{\prime \prime}(0)=\frac{\phi^{\prime \prime \prime \prime}(0)}{4}
$$

Using our calculations for $\tilde{a}^{\prime}(0)$ and $\tilde{a}^{\prime \prime}(0)$, we may now compute that

$$
L_{2}(a)(0)=0 \text { and } L_{4}(a)(0)=\frac{\phi^{\prime \prime \prime \prime}(0)}{4 \cdot 2} C_{2}=\frac{\sqrt{2 \pi}}{8} \phi^{\prime \prime \prime \prime}(0)
$$

Hence, substituting into (1), we obtain

$$
I[\epsilon] \sim \sqrt{2 \pi \epsilon}+\frac{\sqrt{2 \pi}}{8} \phi^{\prime \prime \prime \prime}(0) \epsilon^{3 / 2}+o\left(\epsilon^{3 / 2}\right)
$$

as claimed.

Problem 2

Suppose that $H=H(x)$ is a double-well potential function, that is, a smooth, even function, with a local minimum at $x= \pm 1$ with $H(\pm 1)=0$ and a local maximum at $x=0$ with $H(0)=1$. Laplace's method says that if ϕ has a global maximum at $x=1$, and for any smooth a, then

$$
\begin{equation*}
I[\epsilon]=\int_{0}^{\infty} a(x) e^{\frac{\phi(x)}{\epsilon}} d x \sim a(1) e^{\frac{\phi(1)}{\epsilon}} \sqrt{\frac{2 \pi \epsilon}{\left|\phi^{\prime \prime}(1)\right|}}+o(\sqrt{\epsilon}) . \tag{5}
\end{equation*}
$$

(a)

Let Z^{ϵ} be a 'normalizing' constant such that

$$
\begin{equation*}
Z^{\epsilon} \int_{\mathbb{R}} e^{-\frac{H(x)}{\epsilon}} d x=1 \tag{6}
\end{equation*}
$$

Use Laplace's method to show that

$$
\frac{1}{Z^{\epsilon}} \sim \frac{2 \sqrt{2 \pi \epsilon}}{\sqrt{H^{\prime \prime}(1)}}+o(\sqrt{\epsilon})
$$

For the sake of simplicity, we hereafter ignore the remainder term and assume that

$$
\frac{1}{Z^{\epsilon}}=\frac{2 \sqrt{2 \pi \epsilon}}{\sqrt{H^{\prime \prime}(1)}}
$$

Proof. First, by the symmetry of H about zero, (6) may equivalently be written

$$
Z^{\epsilon} \cdot 2 \int_{0}^{\infty} e^{-\frac{H(x)}{\epsilon}}=1
$$

We can re-arrange this to obtain

$$
\frac{1}{Z^{\epsilon}}=2 \int_{0}^{\infty} e^{-\frac{H(x)}{\epsilon}} d x
$$

We see that we can apply (5), with $a(x) \equiv 1$ and $\phi(x)=-H(x)$. We can do this because as we can see from the schematic diagram given in the problem set as well the description of H, the local minimum at 1 is actually a global minimum, so by assigning $\phi(x)=-H(x)$, we obtain a ϕ that has a global maximum at 1 as required (also at -1 , since these have the same value). Accordingly, we compute the right-hand side of (5). We have $a(1)=1$. By assumption, $\phi(1)=-H(1)=0$. We immediately obtain

$$
\frac{1}{Z^{\epsilon}} \sim \frac{2 \sqrt{2 \pi \epsilon}}{\sqrt{H^{\prime \prime}(1)}}+o(\sqrt{\epsilon})
$$

as claimed.

(b)

Let $\sigma^{\epsilon}(x)=Z^{\epsilon} e^{-\frac{H(x)}{\epsilon}}$ and $\tau^{\epsilon}=\frac{1}{\epsilon} e^{-\frac{1}{\epsilon}}$ and let $\delta=\delta(\epsilon)$ be chosen such that $\delta \rightarrow 0$ and $\frac{\delta}{\sqrt{\epsilon}} \rightarrow \infty$ as $\epsilon \rightarrow 0$. Use a second-order Taylor expansion of H around 0 (ignore the higher-order terms) as well as the fact that $\int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}$ to show that, as $\epsilon \rightarrow 0$

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{\tau^{\epsilon}}{\sigma^{\epsilon}(x)} d x=\frac{2}{\kappa} \tag{7}
\end{equation*}
$$

where $\kappa=\frac{\sqrt{\left|H^{\prime \prime}(0)\right| H^{\prime \prime}(1)}}{2 \pi}$.
Proof. We want to show that

$$
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{1}{\epsilon} \frac{e^{-\frac{1}{\epsilon}}}{Z^{\epsilon} e^{-\frac{H(x)}{\epsilon}}} d x=\frac{2 \cdot 2 \pi}{\sqrt{\left|H^{\prime \prime}(0)\right| H^{\prime \prime}(1)}}
$$

or, written in more compact notation,

$$
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{1}{\epsilon Z^{\epsilon}} e^{-\frac{1-H(x)}{\epsilon}} d x=\frac{2 \cdot 2 \pi}{\sqrt{\left|H^{\prime \prime}(0)\right| H^{\prime \prime}(1)}} .
$$

Using a second-order Taylor expansion, $H(x) \approx H(0)+H^{\prime}(0) x+\frac{H^{\prime \prime}(0)}{2} x^{2}$. Plugging this expansion and what we found in 2 (a) into the left-hand side of $\sqrt{7}$), we have

$$
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{1}{\epsilon} \frac{2 \sqrt{2 \pi \epsilon}}{\sqrt{H^{\prime \prime}(1)}} e^{-\frac{1-\left(H(0)+H^{\prime}(0) x+\frac{1}{2} H^{\prime \prime}(0) x^{2}\right)}{\epsilon}} d x
$$

Pulling out the constants and recall we have a local max at 0 so actually $H^{\prime}(0)=0$, and by assumption $H(0)=1$, this then becomes

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \frac{2 \sqrt{2 \pi \epsilon}}{\sqrt{H^{\prime \prime}(1)}} \int_{-\delta}^{\delta} e^{-\frac{\frac{1}{2} H^{\prime \prime}(0) x^{2}}{\epsilon}} d x
$$

Now we want to evaluate the integral

$$
\lim _{\epsilon \rightarrow 0} \frac{2 \sqrt{2 \pi}}{\sqrt{H^{\prime \prime}(1) \epsilon}} \int_{-\delta}^{\delta} e^{-\frac{H^{\prime \prime}(0)}{\epsilon} \frac{1}{2} x^{2}} d x
$$

Let $u=\frac{\sqrt{\left|H^{\prime \prime} 0\right|}}{\sqrt{\epsilon}} x$ so that $u^{2}=\frac{H^{\prime \prime}(0)}{\epsilon} x^{2}$. Then $\frac{\sqrt{\epsilon}}{\sqrt{\left|H^{\prime \prime} 0\right|}} d u=d x$, so we have after using u-substitution

$$
\lim _{\epsilon \rightarrow 0} \frac{2 \sqrt{2 \pi}}{\sqrt{H^{\prime \prime}(1) \epsilon}}\left[\sqrt{2 \pi} \frac{\sqrt{\epsilon}}{\sqrt{\left|H^{\prime \prime} 0\right|}}\right]_{x=-\delta}^{x=\delta} .
$$

Notice that when we evaluate the integral, u appears nowhere, so it does not matter that we did not convert the bounds when we did u-substitution, and we have arrived at

$$
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{\tau^{\epsilon}}{\sigma^{\epsilon}(x)} d x=\lim _{\epsilon \rightarrow 0} \frac{2 \sqrt{2 \pi}}{\sqrt{H^{\prime \prime}(1) \epsilon}} \sqrt{2 \pi} \frac{\sqrt{\epsilon}}{\sqrt{\left|H^{\prime \prime} 0\right|}}
$$

Simplifying the right hand side, we have

$$
\lim _{\epsilon \rightarrow 0} \frac{2 \cdot 2 \pi}{\sqrt{H^{\prime \prime}(1)\left|H^{\prime \prime}(0)\right|}}
$$

Evaluating this limit, since ϵ actually appears nowhere, we obtain

$$
\lim _{\epsilon \rightarrow 0} \int_{-\delta}^{\delta} \frac{\tau^{\epsilon}}{\sigma^{\epsilon}(x)} d x=\lim _{\epsilon \rightarrow 0} \frac{2 \cdot 2 \pi}{\sqrt{H^{\prime \prime}(1)\left|H^{\prime \prime}(0)\right|}}=\frac{2 \cdot 2 \pi}{\sqrt{H^{\prime \prime}(1)\left|H^{\prime \prime}(0)\right|}}=\frac{2}{\kappa}
$$

as claimed.

