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Problem 1

Suppose ϕ has a global max at 0 with ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = −1, and ϕ′′′(0) = 0. Let a(x) ≡ 1
and consider

I[ϵ] =

∫
R
e

ϕ(x)
ϵ dx.

Show that

I[ϵ] ∼
√
2πϵ+

√
2π

8
ϕ′′′′(0)ϵ3/2 + o(ϵ3/2),

assuming that

(L0(a))(0) = a(0) =

√
2π

|ϕ′′(0)|
=

√
2π

and that

C2 =

∫
R
x2e−

x2

2 dx =
√
2π.

Proof. Since the desired asymptotic expansion features an o(ϵ3/2) term, per the Laplace Method,
we only need to calculate through k = 2, so we only need to calculate (L2a)(0) and (L4a)(0) (our
indexing is by 2k). Then, as discussed in class,

I[ϵ] ∼ L0(a)(0)
√
ϵ+ L2(a)(0)ϵ+ L4(a)(0)ϵ

3/2 + o(ϵ3/2) (1)

where

L2(a)(0) = (ã)′(0)C1 and L4(a)(0) =
(ã)′′(0)

2
C2

and, as in class (using the same notation),

ã(y) = a(ψ(y))η(ψ(y))ψ′(y).

Since a(x) ≡ 1, we can simplify
ã(y) = η(ψ(y))ψ′(y).

The first derivative of ã is given by

ã′(y) = η′(ψ(y))(ψ′(y))2 + ψ′′(y)η(ψ(y)) (2)

and the second derivative is given by

ã′′(y) = η′(ψ(y))2ψ′(y)ψ′′(y) + (ψ′(y))2η′′(ψ(y))ψ′(y) + ψ′′(y)η′(ψ(y))ψ′(y) + η(ψ(y))ψ′′′(y). (3)

Recall that we derived in class that ψ(0) = 0, η(0) = 1, and ψ′(0) = 1√
|ϕ′′(0)|

. Since by assumption,

ϕ′′(0) = −1, then ψ′(0) = 1. Similar to what we did in class, we determine ψ′′(y) by further
differentiating ϕ′(ψ(y))ψ′(y) = −y. Differentiating this one time, as in class, we obtain.

ϕ′′(ψ(y))(ψ′(y))2 + ϕ′(ψ(y))ψ′′(y) = −1.

Now differentiating this once further, we obtain

ϕ′′′(ψ(y))(ψ′(y))3 + 2ψ′(y)ψ′′(y)ϕ′′(ψ(y)) + ϕ′(ψ(y))ψ′′′(y) + ψ′′(y)ϕ′′(ψ(y))ψ′(y) = 0. (4)

Evaluating at y = 0 and noting that ψ(0) = 0, ϕ′′(0) = −1, and ϕ′′′(0) = 0, we obtain the equation

0 + 2 · 1 · ψ′′(0) · −1 + 0 + ψ′′(0) · −1 · 1 = 0.
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We may then conclude that ψ′′(0) = 0. The only other information we need in order to evaluate
ã′(0), per (2), is about η′(ψ(0)) = η′(0). Yet, since η = 1 in (−δ, δ), we know that η′(0) = η′′(0) = 0.
We can then evaluate

ã′(0) = η′(0) + 0 = 0.

With this computed, we turn to ã′′(0). From (3), what we have already computed, and our assump-
tions:

ã′′(0) = 0 + η′′(0) + ψ′′′(0) = ψ′′′(0).

We then need to find ψ′′′(0). We can further differentiate (4) in order to find ψ′′′(0). In the following,
ellipses signify terms that we can immediately see will be zero when evaluated at zero (for the sake
of brevity):

ϕ′′′′(ψ(y))(ψ′(y))4 + 3(ψ′(y))2ψ′′(y)ϕ′′′(ψ(y)) + 2ψ′′(y)...+ 2ψ′(y)ϕ′′(ψ(y))ψ′′′(y)

+ϕ′(ψ(y))...+ ψ′′′(y) · ϕ′′(ψ(y)) · ψ′(y) + ψ′′(y)...+ ϕ′′(ψ(y))ψ′(y)ψ′′′(y) = 0.

At zero, since ψ(0) = 0, ψ′(0) = 1, and ψ′′(0) = 0, we obtain

ϕ′′′(0) + 0 + 0 + 2 · −1 · ψ′′′(y) + 0 + ψ′′′(y) · −1 · 1 + 0− ψ′′′(y) = 0

so

ψ′′′(0) =
ϕ′′′′(0)

4
.

We then have that

ã′′(0) =
ϕ′′′′(0)

4
.

Using our calculations for ã′(0) and ã′′(0), we may now compute that

L2(a)(0) = 0 and L4(a)(0) =
ϕ′′′′(0)

4 · 2
C2 =

√
2π

8
ϕ′′′′(0).

Hence, substituting into (1), we obtain

I[ϵ] ∼
√
2πϵ+

√
2π

8
ϕ′′′′(0)ϵ3/2 + o(ϵ3/2)

as claimed.
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Problem 2

Suppose that H = H(x) is a double-well potential function, that is, a smooth, even function, with a
local minimum at x = ±1 with H(±1) = 0 and a local maximum at x = 0 with H(0) = 1. Laplace’s
method says that if ϕ has a global maximum at x = 1, and for any smooth a, then

I[ϵ] =

∫ ∞

0

a(x)e
ϕ(x)

ϵ dx ∼ a(1)e
ϕ(1)
ϵ

√
2πϵ

|ϕ′′(1)|
+ o(

√
ϵ). (5)

(a)

Let Zϵ be a ‘normalizing’ constant such that

Zϵ

∫
R
e−

H(x)
ϵ dx = 1. (6)

Use Laplace’s method to show that

1

Zϵ
∼ 2

√
2πϵ√

H ′′(1)
+ o(

√
ϵ)

For the sake of simplicity, we hereafter ignore the remainder term and assume that

1

Zϵ
=

2
√
2πϵ√

H ′′(1)

Proof. First, by the symmetry of H about zero, (6) may equivalently be written

Zϵ · 2
∫ ∞

0

e−
H(x)

ϵ = 1.

We can re-arrange this to obtain
1

Zϵ
= 2

∫ ∞

0

e−
H(x)

ϵ dx.

We see that we can apply (5), with a(x) ≡ 1 and ϕ(x) = −H(x). We can do this because as we
can see from the schematic diagram given in the problem set as well the description of H, the local
minimum at 1 is actually a global minimum, so by assigning ϕ(x) = −H(x), we obtain a ϕ that has
a global maximum at 1 as required (also at −1, since these have the same value). Accordingly, we
compute the right-hand side of (5). We have a(1) = 1. By assumption, ϕ(1) = −H(1) = 0. We
immediately obtain

1

Zϵ
∼ 2

√
2πϵ√

H ′′(1)
+ o(

√
ϵ)

as claimed.

(b)

Let σϵ(x) = Zϵe−
H(x)

ϵ and τ ϵ = 1
ϵ e

− 1
ϵ and let δ = δ(ϵ) be chosen such that δ → 0 and δ√

ϵ
→ ∞ as

ϵ → 0. Use a second-order Taylor expansion of H around 0 (ignore the higher-order terms) as well

as the fact that
∫
R e

− x2

2 dx =
√
2π to show that, as ϵ→ 0

lim
ϵ→0

∫ δ

−δ

τ ϵ

σϵ(x)
dx =

2

κ
(7)

where κ =

√
|H′′(0)|H′′(1)

2π .

Proof. We want to show that

lim
ϵ→0

∫ δ

−δ

1

ϵ

e−
1
ϵ

Zϵe−
H(x)

ϵ

dx =
2 · 2π√

|H ′′(0)|H ′′(1)
,
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or, written in more compact notation,

lim
ϵ→0

∫ δ

−δ

1

ϵZϵ
e−

1−H(x)
ϵ dx =

2 · 2π√
|H ′′(0)|H ′′(1)

.

Using a second-order Taylor expansion, H(x) ≈ H(0) +H ′(0)x + H′′(0)
2 x2. Plugging this expansion

and what we found in 2(a) into the left-hand side of (7), we have

lim
ϵ→0

∫ δ

−δ

1

ϵ

2
√
2πϵ√

H ′′(1)
e−

1−(H(0)+H′(0)x+1
2
H′′(0)x2)

ϵ dx.

Pulling out the constants and recall we have a local max at 0 so actuallyH ′(0) = 0, and by assumption
H(0) = 1, this then becomes

lim
ϵ→0

1

ϵ

2
√
2πϵ√

H ′′(1)

∫ δ

−δ

e−
1
2
H′′(0)x2

ϵ dx

Now we want to evaluate the integral

lim
ϵ→0

2
√
2π√

H ′′(1)ϵ

∫ δ

−δ

e−
H′′(0)

ϵ
1
2x

2

dx.

Let u =

√
|H′′0|√

ϵ
x so that u2 = H′′(0)

ϵ x2. Then
√
ϵ√

|H′′0|
du = dx, so we have after using u-substitution

lim
ϵ→0

2
√
2π√

H ′′(1)ϵ

[
√
2π

√
ϵ√

|H ′′0|

]x=δ

x=−δ

.

Notice that when we evaluate the integral, u appears nowhere, so it does not matter that we did not
convert the bounds when we did u-substitution, and we have arrived at

lim
ϵ→0

∫ δ

−δ

τ ϵ

σϵ(x)
dx = lim

ϵ→0

2
√
2π√

H ′′(1)ϵ

√
2π

√
ϵ√

|H ′′0|
.

Simplifying the right hand side, we have

lim
ϵ→0

2 · 2π√
H ′′(1)|H ′′(0)|

.

Evaluating this limit, since ϵ actually appears nowhere, we obtain

lim
ϵ→0

∫ δ

−δ

τ ϵ

σϵ(x)
dx = lim

ϵ→0

2 · 2π√
H ′′(1)|H ′′(0)|

=
2 · 2π√

H ′′(1)|H ′′(0)|
=

2

κ
,

as claimed.
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