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Problem 1

Suppose ¢ has a global max at 0 with ¢(0) = 0,¢'(0) = 0,¢”(0) = —1, and ¢"/(0) = 0. Let a(z) =1

and consider
Ile] = / e* dz.
R

I[e] ~ V2me + @(ﬁ"”(O)eg/2 + o(e%/?),

(Lofa))(0) = a(0) = djg))' —Vam

1,2
Cy = / e T dx = V2.
R

Show that

assuming that

and that

Proof. Since the desired asymptotic expansion features an 0(63/ %) term, per the Laplace Method,
we only need to calculate through k = 2, so we only need to calculate (L2a)(0) and (L4a)(0) (our
indexing is by 2k). Then, as discussed in class,

I[e] ~ Lo(a)(0)v/e + La(a)(0)e + Ly(a)(0)e¥/? + o(e3/?) (1)
where

La(a)(0) = (@)'(0)Cy and Ly(a)(0) = w@

and, as in class (using the same notation),

a(y) = a((y)) (Y)Y (v).

Since a(x) = 1, we can simplify

a'(y) = ' (W)W @) +4" W)W (y)) (2)

and the second derivative is given by

a"(y) = 1" (()2¢' ()" () + @' )" W W)Y () + " W' W)Y () + n@ )" (y).  (3)

Recall that we derived in class that ¢(0) = 0, n(0) = 1, and ¢’(0) = I¢}’(0)\' Since by assumption,

¢"(0) = —1, then ¥’(0) = 1. Similar to what we did in class, we determine ¥ (y) by further
differentiating ¢’(¢(y))¥’(y) = —y. Differentiating this one time, as in class, we obtain.

¢" (L) (W' () + ¢ (WY)W (y) = —1.

Now differentiating this once further, we obtain
¢" (DY) (¥ (1)) + 20" (V" ()" (W (Y)) + &' (W)Y () + " ()" (Y)Y (y) = 0. (4)
Evaluating at y = 0 and noting that ¢ (0) = 0, ¢”(0) = —1, and ¢"’(0) = 0, we obtain the equation

0+2-1-4"(0)-—14+0+%"(0)-—-1-1=0.
1



0. The only other information we need in order to evaluate

We may then conclude that " (0) =
=1'(0). Yet, since n =1 in (—4,4), we know that »'(0) =" (0) = 0.

t
a'(0), per , is about 7’ (1(0))

We can then evaluate
a'(0) =7 (0)+0=0.

With this computed, we turn to a@”(0). From , what we have already computed, and our assump-
tions:

a"(0) = 0+n"(0) + "' (0) = ¢ (0).

We then need to find ¥’ (0). We can further differentiate (4]) in order to find ¥"”’(0). In the following,
ellipses signify terms that we can immediately see will be zero when evaluated at zero (for the sake
of brevity):

¢"" (W))W () + 3 (1)*¢" ()" (1Y) + 20" (y)-.. +2¢' ()" (U (y))
+¢' (W)~ + " () - " (W) - ¥ (y) + 4" (y)... + " (W (W)Y (v)

At zero, since 1(0) = 0, ¥'(0) = 1, and " (0) = 0, we obtain

¢///(0)+0+O+2.71.w///(y)+0+w///(y).71.1+07w///(y):O

SO 1111
¢I//(O) — ¢ (0)
T
We then have that ¢""(0)
~ _
a”(0) = 1

Using our calculations for a’(0) and a”(0), we may now compute that

¢HH(O) _ \/ﬂ "
oG = Y 0)

Lo(a)(0) =0 and Ly(a)(0) =

Hence, substituting into , we obtain

V2
I[e] ~ V2me + ngi)""(())e?’/2 + o(e*/?)

as claimed.



Problem 2

Suppose that H = H(x) is a double-well potential function, that is, a smooth, even function, with a
local minimum at z = +1 with H(£1) = 0 and a local maximum at z = 0 with H(0) = 1. Laplace’s
method says that if ¢ has a global maximum at x = 1, and for any smooth a, then

Ile] = /000 a(x)ed)(:)dz ~ a(l)e@1 f W%% + o(Ve). (5)
(a)

Let Z€ be a ‘normalizing’ constant such that

H(x)

Ze/e_ < dr=1. (6)
R

Use Laplace’s method to show that

1 2V 2me

~

7"

For the sake of simplicity, we hereafter ignore the remainder term and assume that

1 2V 2me

o(Ve)

N

Proof. First, by the symmetry of H about zero, @ may equivalently be written

ZE~2/ e =1
0

1 > «
—:2/ efydm.
Z6 0

We see that we can apply (5), with a(z) = 1 and ¢(z) = —H(z). We can do this because as we
can see from the schematic diagram given in the problem set as well the description of H, the local
minimum at 1 is actually a global minimum, so by assigning ¢(z) = —H (z), we obtain a ¢ that has
a global maximum at 1 as required (also at —1, since these have the same value). Accordingly, we
compute the right-hand side of (§). We have a(1) = 1. By assumption, ¢(1) = —H (1) = 0. We

immediately obtain
1 2/ 2me

~

AN ol

We can re-arrange this to obtain

o(Ve)

as claimed.

(b)

Let o¢(x) = Z%~ 2 and 7€ = %6_% and let & = §(e) be chosen such that § — 0 and % — 00 as

e — 0. Use a second-order Taylor expansion of H around 0 (ignore the higher-order terms) as well
m2

as the fact that fR e~z dx = /27 to show that, as e — 0

1 €
fim [ o= 2 (7)
e—0 | _5 0¢(x) K

where Kk = w.
T
Proof. We want to show that

01 e« 2.927

lim

) s g T IO
5 € et [H O)H" (1)




or, written in more compact notation,

. | _1-H(x) 221
lim —e c dr=—m—
)5 ez O (1)

Using a second-order Taylor expansion, H(z) ~ H(0) + H'(0)z + Wﬁ. Plugging this expansion
and what we found in 2(a) into the left-hand side of (7)), we have

lim 1 2,/27“ _1—(H(0)+H'(0)=+F H (0)2?)
Py _s5 € /H”

Pulling out the constants and recall we have a local max at 0 so actually H’(0) = 0, and by assumption
H(0) = 1, this then becomes
1 2v2me [0 _3u"©0?
e €

M Em

Now we want to evaluate the integral

dz.

dx

§
2\/ 2 H';(O) 12
H//

dx.

_ VIH"O| 2 _ H (0) Ve _
Let u = N that u . Then \/mdu dx, so we have after using u-substitution

=0
. 227 Ve
lim ——— | V2 .
e—0 H”( ) [ /|H//O|1 s

Notice that when we evaluate the integral, u appears nowhere, so it does not matter that we did not
convert the bounds when we did u-substitution, and we have arrived at

S €
im [ T de = lim 22T \/2 Ve

e—0 J_5 0¢(x) e—0 \/H// ﬂ-\/|H//0|'

Simplifying the right hand side, we have
22w
m-—.
<=0 /H"(1)[H"(0)]
Evaluating this limit, since € actually appears nowhere, we obtain

. 5 e . 2.91 22w
lim ——dx = lim = =
e—0 | 5 o°(x) =0 /H"(1)|H"(0)] H"(D)[H"(0)] &

)

as claimed.



