APMA 1941G Homework 5 Solutions Lulabel Ruiz Seitz

February 23, 2024

Problem 1

This problem refers to Example 1, "Rapidly Oscillating Coefficients."
(a)

In lecture, we defined

$$
\begin{equation*}
\bar{a}=\int_{0}^{1} a+2 w^{\prime} a+w a^{\prime} d y \tag{1}
\end{equation*}
$$

where $w=w(y)$ is the solution of

$$
\begin{cases}-\left(a w^{\prime}\right)^{\prime} & =a^{\prime} \tag{2}\\ w(0) & =w(1)\end{cases}
$$

Show that

$$
\begin{equation*}
\bar{a}=\left(\int_{0}^{1} \frac{1}{a(y)} d y\right)^{-1} \tag{3}
\end{equation*}
$$

Proof. Following the provided hint, we first solve (2) by anti-differentiating and by assuming that $w^{\prime}(0)=0$ without loss of generality. We have:

$$
-\left(a w^{\prime}\right)=a+C
$$

Evaluating this at zero,

$$
-\left(a(0) w^{\prime}(0)\right)=a(0)+C .
$$

Notice that left-hand side is zero by our assumption $w^{\prime}(0)=0$. Then $C=-a(0)$. We then obtain the identity

$$
\begin{equation*}
a w^{\prime}=-a+a(0) . \tag{4}
\end{equation*}
$$

Splitting the integral in 11) and integrating that involving $w a^{\prime}$ by parts, we obtain

$$
\bar{a}=\int_{0}^{1} a+2 w^{\prime} a d y+\left(\left.w a\right|_{0} ^{1}-\int_{0}^{1} w^{\prime} a d y\right)
$$

Notice that the boundary terms are

$$
\left.w a\right|_{0} ^{1}=w(1) a(1)-w(0) a(0)=w(1)(a(1)-a(0))=0 .
$$

Here, we first used the fact that $w(0)=w(1)=0$, and secondly the fact that a is 1 -periodic. We then have that

$$
\bar{a}=\int_{0}^{1} a+w^{\prime} a d y
$$

Substituting in (4), then

$$
\bar{a}=\int_{0}^{1} a(0) d y
$$

Now we will find what $a(0)$ is in order to get the desired form. Due to (4),

$$
a(0)=a \frac{d w}{d y}+a .
$$

Using separation of variables, we then obtain

$$
\int_{0}^{1} \frac{a(0)}{a}-1 d y=w(1)-w(0)=0 .
$$

Re-arranging,

$$
a(0) \int_{0}^{1} \frac{1}{a(y)} d y=1
$$

We may then conclude that

$$
a(0)=\left(\int_{0}^{1} \frac{1}{a(y)} d y\right)^{-1}
$$

Then since

$$
\bar{a}=\int_{0}^{1} a(0) d y=1 \cdot a(0)=\left(\int_{0}^{1} \frac{1}{a(y)} d y\right)^{-1}
$$

we have shown the desired result.

(1b)

Using the formula for \bar{a} from (a), find the general solution of

$$
-\bar{a} u_{x x}^{0}=f(x) .
$$

Solution. Since \bar{a} is a (nonzero) constant, we can integrate with respect to x to find that

$$
u_{x}^{0}=-\frac{1}{\bar{a}} \int f(x) d x
$$

Integrating in x again,

$$
u^{0}=-\frac{1}{\bar{a}} \int\left(\int f(x) d x\right) d x .
$$

This shows how we can obtain an explicit solution for u^{0} for any given f. We can also write this in a different form. If we let F be such that $\frac{d F}{d x}=f$, then we could instead write

$$
u_{x}^{0}=-\frac{1}{\bar{a}}(F+C)
$$

where $C \in \mathbb{R}$. Then we could write the explicit solution for u in the possibly better form

$$
u^{0}=-\frac{1}{\bar{a}}(G(x)+C x+B)
$$

where $\frac{d G}{d x}=F(x)$ and $B \in \mathbb{R}$.

Problem 2

(a)

Using undetermined coefficients, find a particular solution of

$$
w^{\prime \prime}(t)+w(t)=-\frac{1}{4} \cos (3 t) .
$$

Solution. First note that a solution to the homogeneous problem will take the form $A \cos (t)+B \sin (t)$, whereas the non-homogeneous term is of the form $C \cos (3 t)$, hence the frequencies are not the same and we do not have to worry about the issue of resonance $(A, B, C \in \mathbb{R})$. To justify our claim for the form of the solution to the homogeneous problem, we can make the ansatz $w=e^{\lambda t}$, then see that upon substituting into the homegeneous equation we obtain

$$
\lambda^{2} e^{\lambda t}+e^{\lambda t}=0 .
$$

We can see that the characteristic polynomial $\lambda^{2}+1=0$ has roots $\pm i$, so we obtain the solutions $w_{1}=$ $c_{1} e^{-i t}$ and $w_{2}=c_{2} e^{i t}$. Using Euler's identity and the superposition principle yields a homogeneous solution of

$$
w_{h}=c_{1} \cos (t)-i c_{1} \sin (t)+c_{2} \cos (t)+i c_{2} \sin (t)
$$

$$
w_{h}(t)=\left(c_{1}+c_{2}\right) \cos (t)+\left(i c_{2}-i c_{1}\right) \sin (t)
$$

Letting c_{1} and c_{2} be complex conjugates of each other, we can get rid of the i 's so that we can re-express this as

$$
w_{h}(t)=A \cos (t)+B \sin (t)
$$

for some $A, B \in \mathbb{R}$.
With that justified, we find the particular solution. Using the method of undetermined coefficients, we make the ansatz

$$
w_{p}(t)=A \cos (3 t)+B \sin (3 t)
$$

In order to substitute this into the homogeneous equation, we first compute

$$
w_{p}^{\prime}(t)=-3 A \sin (3 t)+3 B \cos (3 t)
$$

and

$$
w_{p}^{\prime \prime}(t)=-9 A \cos (3 t)-9 B \sin (3 t)
$$

Substituting, we then have

$$
-9 A \cos (3 t)-9 B \sin (3 t)+A \cos (3 t)+B \sin (3 t)=-\frac{1}{4} \cos (3 t)
$$

Hence

$$
-9 A+A=-\frac{1}{4}
$$

so $A=1 / 32$ and $B=0$. Our particular solution is overall

$$
w_{p}(t)=\frac{1}{32} \cos (3 t)
$$

(b)

Using undetermined coefficients, find a particular solution of

$$
w^{\prime \prime}(t)+w(t)=-\frac{3}{4} \cos (t)
$$

Solution. Since in this case the frequencies in the homogeneous solution and the non-homogeneous term are the same, we need to multiply the form of the solution to the homogeneous problem by t. We then have the ansatz

$$
w_{p}=t(A \cos (t)+B \sin (t)) .
$$

Then

$$
w_{p}^{\prime}=-A t \sin (t)+A \cos (t)+B t \cos (t)+B \sin (t)
$$

and

$$
\begin{aligned}
w_{p}^{\prime \prime} & =-A t \cos (t)-A \sin (t)-A \sin (t)-B t \sin (t)-B \cos (t)+B \cos (t) \\
& =-A t \cos (t)-B t \sin (t)-2 A \sin (t)+2 B \cos (t)
\end{aligned}
$$

Substituting our ansatz in,

$$
-A t \cos (t)-B t \sin (t)-2 A \sin (t)+2 B \cos (t)+A t \cos (t)+B t \sin (t)=-\frac{3}{4} \cos (t)
$$

Matching the coefficients,

$$
-A t+2 B+A t=-\frac{3}{4}
$$

and

$$
-B t-2 A+B t=0
$$

Then $A=0$ and $B=-\frac{3}{8}$. We thus obtain

$$
w_{p}=-\frac{3 t}{8} \sin (t)
$$

(c)

Use $-\cos ^{3}(t)=-\frac{3}{4} \cos (t)-\frac{1}{4} \cos (3 t)$ to find the general solution

$$
u_{1}^{\prime \prime}(t)+u_{1}(t)=-\cos ^{3}(t) .
$$

Solution. From the superposition principle and our answers to the previous parts, the homogeneous solution is

$$
u_{1}^{h}(t)=C_{1} \cos (t)+C_{2} \sin (t)
$$

and our particular solution is

$$
u_{1}^{p}(t)=\frac{1}{32} \cos (3 t)-\frac{3 t}{8} \sin (t),
$$

by making use of the given identity. We overall have the general solution

$$
u_{1}(t)=C_{1} \cos (t)+C_{2} \sin (t)+\frac{1}{32} \cos (3 t)-\frac{3 t}{8} \sin (t) \text {. }
$$

(d)

Find the solution of (c) that satisfies $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=0$.
Solution. First,

$$
\begin{aligned}
u_{1}(0) & =C_{1} \cos (0)+C_{2} \sin (0)+\frac{1}{32} \cos (3 \cdot 0)-\frac{3 \cdot 0}{8} \sin (0) \\
& =C_{1}+\frac{1}{32}
\end{aligned}
$$

Thus $C_{1}=-1 / 32$. Next, we take the derivative of u_{1} and find

$$
u_{1}^{\prime}(t)=\frac{1}{32} \sin (t)+C_{2} \cos (t)-\frac{3}{32} \sin (3 t)-\frac{3 t}{8} \cos (t)-\frac{3}{8} \sin (t)
$$

Now we substitute in zero:

$$
\begin{aligned}
u_{1}^{\prime}(0) & =-\frac{11}{32} \sin (0)+C_{2} \cos (0)-\frac{3}{32} \sin (3 \cdot 0)-\frac{3 \cdot 0}{8} \cos (0) \\
& =C_{2}
\end{aligned}
$$

Thus $C_{2}=0$. Overall, we then have

$$
u_{1}(t)=-\frac{1}{32} \cos (t)+\frac{1}{32} \cos (3 t)-\frac{3 t}{8} \sin (t)
$$

as the solution to the problem with these initial conditions.

