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Problem 1

Consider the equation {
u′′
ϵ + ϵu′

ϵ + uϵ = 0

uϵ(0) = 1, u′
ϵ(0) = 1

(1)

Apply the ansatz
uϵ(t) = u0(t, ϵt) + ϵu1(t, ϵt) + ...

Here uϵ = uϵ(t) and uk = uk(t, τ) (where τ = ϵt).

(a)

Show that u0(t, τ) = A(τ) cos(t) +B(τ) sin(t).

Proof. First, we evaluate

u′
ϵ(t) = u0

t + ϵu0
τ + ϵu1

t + ϵ2u1
τ

u′′
ϵ (t) = u0

tt + 2ϵu0
tτ + ϵ2u0

ττ + ϵu1
tt + 2ϵ2u2

tτ + ϵ3u1
ττ

Plugging our ansatz into (1), we obtain

u0
tt + 2ϵu0

tτ + ϵ2u0
ττ + ϵu1

tt + 2ϵ2u2
tτ + ϵ3u1

ττ + ϵu0
t ϵ

2u0
τ + ϵ2u1

t + ϵ3u1
τ + ... = 0 (2)

Comparing the O(1) terms, we obtain

u0
tt(t, ϵt) + u0(t, ϵt) = 0

Solving this differential equation in t, exactly as in the previous homework, we obtain

u0(t, τ) = A(τ) cos(t) +B(τ) sin(t). (3)

(b)

Find an ODE for A and B and solve it, and use that to solve for u0(t) = u0(t, ϵt). Impose the
conditions u0(0) = 1 and u′

0(0) = 1. Hint. Select A and B to kill the resonance terms cos(t) and
sin(t), just like we did for Duffing’s equation.

Solution. To find the ODE for A and B, we make use of the O(ϵ) terms. We obtain

2ϵu0
tτ + ϵu1

tt + ϵu0
t + ϵu1 = 0. (4)

Recalling (3), we evaluate

u0
t = −A(τ) sin t+B(τ) cos t

u0
tτ = −A′(τ) sin t+B′(τ) sin t

Plugging this into (4), we obtain

u1
tt + u1 = A(τ) sin t−B(τ) cos t+ 2A′(τ) sin t− 2B′(τ) cos t.

Notice that we will obtain resonance if we do not choose A and B such that the right-hand side
becomes zero, since the frequency for the homogeneous equation will also be 1. We then require

2A′ +A = 0 and − 2B′ −B = 0.

Solving this system of ODEs, we obtain A(τ) = C1e
−τ/2 and B(τ) = C2e

−τ/2. Now we need to make
use of the given initial conditions. Since u0(0) = 1, A(0) cos(0) + B(0) sin(0) = A(0) = 1. Then
C1e

0 = 1, so C1 = 1. Similarly, using the condition u′
0(0) = 1, we obtain that B(0) = 1. Then

A(τ) = B(τ) = e−τ/2. We thus obtain

u0(t) = e−ϵt/2(cos t+ sin t). (5)
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(c)

Find the exact solution of the original ODE and compare it with the solution u0 from (b). Do we
have limϵ→0 u

ϵ(t) = limϵ→0 u0(t)?

Solution. We are interested in solving the ODE u′′ + ϵu′ + u = 0 subject to the initial condi-
tions u(0) = 1 and u′(0) = 1. Fix any ϵ > 0. The characteristic equation is then λ2 + ϵλ + 1 = 0.

This has solutions λ = − ϵ
2 ±

√
ϵ2−4
2 . The general solution is then

u(t) = C1e
−
(

ϵ−
√

ϵ2−4
2

)
t
+ C2e

−
(

ϵ+
√

ϵ2−4
2

)
t
.

Since u(0) = 1, C1 + C2 = 1. Since u′(0) = 1, −
(

ϵ−
√
ϵ2−4
2

)
C1 −

(
ϵ+

√
ϵ2−4
2

)
C2 = 1. Solving for C1

and C2 algebraically, we find that

C1 =
1√

ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

C2 = − 1√
ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

so that our solution becomes

u(t) =

(
1√

ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

)
e
−
(

ϵ−
√

ϵ2−4
2

)
t
+

(
− 1√

ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

)
e
−
(

ϵ+
√

ϵ2−4
2

)
t
. (6)

Now considering the limit of (5),

lim
ϵ→0

u0(t) = lim
ϵ→0

(e−ϵt/2(cos t+ sin t)) = cos t+ sin t.

Now we can consider the limit of (6) for comparison:

lim
ϵ→0

u(t) = lim
ϵto0

((
1√

ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

)
e
−
(

ϵ−
√

ϵ2−4
2

)
t
+

(
− 1√

ϵ2 − 4

(
1 +

ϵ

2

)
+

1

2

)
e
−
(

ϵ+
√

ϵ2−4
2

)
t

)

=

(
1

2i
+

1

2

)
eit +

(
− 1

2i
+

1

2

)
e−it

=

(
1

2i
+

1

2

)
(cos t+ i sin t) +

(
− 1

2i
+

1

2

)
(cos t− i sin t)

=
1

2i
i sin t+

1

2
cos t+

1

2i
i sin t+

1

2
cos t

= cos t+ sin t.

The limits are indeed the same!
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Problem 2: The Inverted Pendulum Problem

Consider the equation

θ′′e −
(
a+

b

ϵ
cos

(
t

ϵ

))
sin(θϵ) = 0 (7)

where a > 0 and b > 0 are constants, and θ = θ(t). Apply the ansatz

θϵ(t) = θ0
(
t,
t

ϵ

)
+ ϵθ1

(
t,
t

ϵ

)
+ ...

where θk = θk(t, τ) and τ 7→ θk(t, τ) is 2π-periodic.

(a)

Show that θ does not depend on τ , that is θ0 = θ0(t).

Proof. First, we evaluate

θ′ϵ = θ0t +
1

ϵ
θ0τ + ϵθ1t + θ1τ

θ′′ϵ = θ0tt +
2

ϵ
θ0tτ +

1

ϵ2
θ0ττ + ϵθ1tt + 2θ1tτ +

1

ϵ
θ1ττ .

Now, substituting the ansatz into (7), we obtain

θ0tt +
2

ϵ
θ0tτ +

1

ϵ2
θ0ττ + ϵθ1tt + 2θ1tτ +

1

ϵ
θ1ττ −

(
a+

b

ϵ
cos

(
t

ϵ

))
sin(θ0 + ϵθ1 + ...) + ... = 0. (8)

Using a Taylor expansion for the sine term, sin(θ0 + ϵθ1 + ...) = sin(θ0) + ϵθ1 cos(θ0) + O(ϵ2). This
will be useful in the next part of the problem. For now, we just consider O

(
1
ϵ2

)
terms, from which

we obtain
1

ϵ2
θ0ττ = 0 =⇒ θ0ττ = 0.

Following the hint to multiply by θ0 and integrate by parts, we obtain that∫ 2π

0

θ0θ0ττdτ = 0,

which implies

θ0θ0τ |2π0 −
∫ 2π

0

(θ0τ )
2dτ = 0.

The boundary terms are zero by the assumption that θ0 is 2π-periodic in τ (and so is θ0τ ). Since
(θ0τ )

2 is a non-negative function that integrates to zero over this domain, then it must be zero on this
domain. This implies that θ0 is constant in τ on this domain (as it is also continuous), but due to
periodicity, it is everywhere constant in τ . We may thus conclude that θ0 = θ0(t).

(b)

Show that θ0 satisfies the ODE

θ0tt +
b2

4
sin(2θ0)− a sin(θ0) = 0.

Proof. Now we compare the O
(
1
ϵ

)
terms. From (8) with the Taylor expansion replacement for the

sine term, we have
2

ϵ
θ0tτ +

1

ϵ
θ1ττ − b

ϵ
cos(τ) sin(θ0) = 0. (9)

Since θ0 is constant in τ , 2θ0tτ = 0, and we can re-arrange to obtain

θ1ττ = b cos(τ) sin(θ0). (10)
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Since θ0 does not depend on τ , we may integrate (10) in τ . We then obtain

θ1τ = b sin(τ) sin(θ0) +A(t).

Integrating again, we have
θ1 = −b cos(τ) sin(θ0) +A(t)τ +B(t).

Following the hint, without loss of generality, we set A(t) and B(t) to be zero. Then we have

θ1 = −b cos(τ) sin(θ0). (11)

Substituting (11) into (8) (with the Taylor expansion for the sine term) and just considering the O(1)
terms, we have

0 = θ0tt + 2θ1tτ − a sin(θ0) + bθ1 cos(τ) cos(θ0)

= θ0tt + 2(b sin(τ) sin(θ0))t − a sin(θ0) + b(b cos(τ) sin(θ0)) cos(τ) cos(θ0)

= θ0tt + 2b sin(τ) cos(θ0)θ0t − a sin(θ0) + b2 cos(θ0) sin(θ0) cos2(τ)

= θ0tt + 2b sin(τ) cos(θ0)θ0t − a sin(θ0) +
b2

2
sin(2θ0) cos2(τ).

In the last line, we used the double angle identity to replace cos(θ0) sin(θ0) = 1
2 sin(2θ

0). Now
integrating by parts over the range [0, 2π], we obtain

0 =

∫ 2π

0

θ0tt + 2b sin(τ) cos(θ0)θ0t − a sin(θ0) +
b2

2
sin(2θ0) + cos2(τ)dτ

= 2π(θ0tt − a sin(θ0)) + (2b cos(τ) cos(θ0)θ0t )|2π0 +
b2

2
π sin(2θ0)

= 2π(θ0tt − a sin(θ0))) +
b2

2
π sin(2θ0)

In the second line, we used the hint that
∫ 2π

0
cos2 xdx = π and the fact that θ0 does not depend on

τ . In the third line, we used the periodicity of cosine. Dividing through by 2π, we obtain

θ0tt +
b2

4
sin(2θ0)− a sin(θ0) = 0

as claimed.
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