# APMA 1941G Homework 6 Solutions Lulabel Ruiz Seitz 

March 5, 2024

## Problem 1

Consider the equation

$$
\begin{cases}u_{\epsilon}^{\prime \prime}+\epsilon u_{\epsilon}^{\prime}+u_{\epsilon} & =0  \tag{1}\\ u_{\epsilon}(0)=1, u_{\epsilon}^{\prime}(0) & =1\end{cases}
$$

Apply the ansatz

$$
u_{\epsilon}(t)=u_{0}(t, \epsilon t)+\epsilon u_{1}(t, \epsilon t)+\ldots
$$

Here $u_{\epsilon}=u_{\epsilon}(t)$ and $u_{k}=u_{k}(t, \tau)$ (where $\tau=\epsilon t$ ).

## (a)

Show that $u^{0}(t, \tau)=A(\tau) \cos (t)+B(\tau) \sin (t)$.
Proof. First, we evaluate

$$
\begin{aligned}
u_{\epsilon}^{\prime}(t) & =u_{t}^{0}+\epsilon u_{\tau}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{\tau}^{1} \\
u_{\epsilon}^{\prime \prime}(t) & =u_{t t}^{0}+2 \epsilon u_{t \tau}^{0}+\epsilon^{2} u_{\tau \tau}^{0}+\epsilon u_{t t}^{1}+2 \epsilon^{2} u_{t \tau}^{2}+\epsilon^{3} u_{\tau \tau}^{1}
\end{aligned}
$$

Plugging our ansatz into (1), we obtain

$$
\begin{equation*}
u_{t t}^{0}+2 \epsilon u_{t \tau}^{0}+\epsilon^{2} u_{\tau \tau}^{0}+\epsilon u_{t t}^{1}+2 \epsilon^{2} u_{t \tau}^{2}+\epsilon^{3} u_{\tau \tau}^{1}+\epsilon u_{t}^{0} \epsilon^{2} u_{\tau}^{0}+\epsilon^{2} u_{t}^{1}+\epsilon^{3} u_{\tau}^{1}+\ldots=0 \tag{2}
\end{equation*}
$$

Comparing the $O(1)$ terms, we obtain

$$
u_{t t}^{0}(t, \epsilon t)+u^{0}(t, \epsilon t)=0
$$

Solving this differential equation in $t$, exactly as in the previous homework, we obtain

$$
\begin{equation*}
u^{0}(t, \tau)=A(\tau) \cos (t)+B(\tau) \sin (t) \tag{3}
\end{equation*}
$$

## (b)

Find an ODE for $A$ and $B$ and solve it, and use that to solve for $u_{0}(t)=u_{0}(t, \epsilon t)$. Impose the conditions $u_{0}(0)=1$ and $u_{0}^{\prime}(0)=1$. Hint. Select $A$ and $B$ to kill the resonance terms $\cos (t)$ and $\sin (t)$, just like we did for Duffing's equation.

Solution. To find the ODE for $A$ and $B$, we make use of the $O(\epsilon)$ terms. We obtain

$$
\begin{equation*}
2 \epsilon u_{t \tau}^{0}+\epsilon u_{t t}^{1}+\epsilon u_{t}^{0}+\epsilon u^{1}=0 \tag{4}
\end{equation*}
$$

Recalling (3), we evaluate

$$
\begin{aligned}
u_{t}^{0} & =-A(\tau) \sin t+B(\tau) \cos t \\
u_{t \tau}^{0} & =-A^{\prime}(\tau) \sin t+B^{\prime}(\tau) \sin t
\end{aligned}
$$

Plugging this into (4), we obtain

$$
u_{t t}^{1}+u^{1}=A(\tau) \sin t-B(\tau) \cos t+2 A^{\prime}(\tau) \sin t-2 B^{\prime}(\tau) \cos t
$$

Notice that we will obtain resonance if we do not choose $A$ and $B$ such that the right-hand side becomes zero, since the frequency for the homogeneous equation will also be 1 . We then require

$$
2 A^{\prime}+A=0 \text { and }-2 B^{\prime}-B=0
$$

Solving this system of ODEs, we obtain $A(\tau)=C_{1} e^{-\tau / 2}$ and $B(\tau)=C_{2} e^{-\tau / 2}$. Now we need to make use of the given initial conditions. Since $u_{0}(0)=1, A(0) \cos (0)+B(0) \sin (0)=A(0)=1$. Then $C_{1} e^{0}=1$, so $C_{1}=1$. Similarly, using the condition $u_{0}^{\prime}(0)=1$, we obtain that $B(0)=1$. Then $A(\tau)=B(\tau)=e^{-\tau / 2}$. We thus obtain

$$
\begin{equation*}
u_{0}(t)=e^{-\epsilon t / 2}(\cos t+\sin t) \tag{5}
\end{equation*}
$$

(c)

Find the exact solution of the original ODE and compare it with the solution $u_{0}$ from (b). Do we have $\lim _{\epsilon \rightarrow 0} u^{\epsilon}(t)=\lim _{\epsilon \rightarrow 0} u_{0}(t)$ ?

Solution. We are interested in solving the ODE $u^{\prime \prime}+\epsilon u^{\prime}+u=0$ subject to the initial conditions $u(0)=1$ and $u^{\prime}(0)=1$. Fix any $\epsilon>0$. The characteristic equation is then $\lambda^{2}+\epsilon \lambda+1=0$. This has solutions $\lambda=-\frac{\epsilon}{2} \pm \frac{\sqrt{\epsilon^{2}-4}}{2}$. The general solution is then

$$
u(t)=C_{1} e^{-\left(\frac{\epsilon-\sqrt{\epsilon^{2}-4}}{2}\right) t}+C_{2} e^{-\left(\frac{\epsilon+\sqrt{\epsilon^{2}-4}}{2}\right) t}
$$

Since $u(0)=1, C_{1}+C_{2}=1$. Since $u^{\prime}(0)=1,-\left(\frac{\epsilon-\sqrt{\epsilon^{2}-4}}{2}\right) C_{1}-\left(\frac{\epsilon+\sqrt{\epsilon^{2}-4}}{2}\right) C_{2}=1$. Solving for $C_{1}$ and $C_{2}$ algebraically, we find that

$$
\begin{aligned}
& C_{1}=\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2} \\
& C_{2}=-\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2}
\end{aligned}
$$

so that our solution becomes

$$
\begin{equation*}
u(t)=\left(\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2}\right) e^{-\left(\frac{\epsilon-\sqrt{\epsilon^{2}-4}}{2}\right) t}+\left(-\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2}\right) e^{-\left(\frac{\epsilon+\sqrt{\epsilon^{2}-4}}{2}\right) t} \tag{6}
\end{equation*}
$$

Now considering the limit of (5),

$$
\lim _{\epsilon \rightarrow 0} u_{0}(t)=\lim _{\epsilon \rightarrow 0}\left(e^{-\epsilon t / 2}(\cos t+\sin t)\right)=\cos t+\sin t
$$

Now we can consider the limit of (6) for comparison:

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} u(t) & =\lim _{\epsilon t o 0}\left(\left(\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2}\right) e^{-\left(\frac{\epsilon-\sqrt{\epsilon^{2}-4}}{2}\right) t}+\left(-\frac{1}{\sqrt{\epsilon^{2}-4}}\left(1+\frac{\epsilon}{2}\right)+\frac{1}{2}\right) e^{-\left(\frac{\epsilon+\sqrt{\epsilon^{2}-4}}{2}\right) t}\right) \\
& =\left(\frac{1}{2 i}+\frac{1}{2}\right) e^{i t}+\left(-\frac{1}{2 i}+\frac{1}{2}\right) e^{-i t} \\
& =\left(\frac{1}{2 i}+\frac{1}{2}\right)(\cos t+i \sin t)+\left(-\frac{1}{2 i}+\frac{1}{2}\right)(\cos t-i \sin t) \\
& =\frac{1}{2 i} i \sin t+\frac{1}{2} \cos t+\frac{1}{2 i} i \sin t+\frac{1}{2} \cos t \\
& =\cos t+\sin t .
\end{aligned}
$$

The limits are indeed the same!

## Problem 2: The Inverted Pendulum Problem

Consider the equation

$$
\begin{equation*}
\theta_{e}^{\prime \prime}-\left(a+\frac{b}{\epsilon} \cos \left(\frac{t}{\epsilon}\right)\right) \sin \left(\theta_{\epsilon}\right)=0 \tag{7}
\end{equation*}
$$

where $a>0$ and $b>0$ are constants, and $\theta=\theta(t)$. Apply the ansatz

$$
\theta_{\epsilon}(t)=\theta^{0}\left(t, \frac{t}{\epsilon}\right)+\epsilon \theta^{1}\left(t, \frac{t}{\epsilon}\right)+\ldots
$$

where $\theta^{k}=\theta^{k}(t, \tau)$ and $\tau \mapsto \theta^{k}(t, \tau)$ is $2 \pi$-periodic.

## (a)

Show that $\theta$ does not depend on $\tau$, that is $\theta^{0}=\theta^{0}(t)$.
Proof. First, we evaluate

$$
\begin{aligned}
& \theta_{\epsilon}^{\prime}=\theta_{t}^{0}+\frac{1}{\epsilon} \theta_{\tau}^{0}+\epsilon \theta_{t}^{1}+\theta_{\tau}^{1} \\
& \theta_{\epsilon}^{\prime \prime}=\theta_{t t}^{0}+\frac{2}{\epsilon} \theta_{t \tau}^{0}+\frac{1}{\epsilon^{2}} \theta_{\tau \tau}^{0}+\epsilon \theta_{t t}^{1}+2 \theta_{t \tau}^{1}+\frac{1}{\epsilon} \theta_{\tau \tau}^{1}
\end{aligned}
$$

Now, substituting the ansatz into (7), we obtain

$$
\begin{equation*}
\theta_{t t}^{0}+\frac{2}{\epsilon} \theta_{t \tau}^{0}+\frac{1}{\epsilon^{2}} \theta_{\tau \tau}^{0}+\epsilon \theta_{t t}^{1}+2 \theta_{t \tau}^{1}+\frac{1}{\epsilon} \theta_{\tau \tau}^{1}-\left(a+\frac{b}{\epsilon} \cos \left(\frac{t}{\epsilon}\right)\right) \sin \left(\theta^{0}+\epsilon \theta^{1}+\ldots\right)+\ldots=0 \tag{8}
\end{equation*}
$$

Using a Taylor expansion for the sine term, $\sin \left(\theta^{0}+\epsilon \theta^{1}+\ldots\right)=\sin \left(\theta^{0}\right)+\epsilon \theta^{1} \cos \left(\theta^{0}\right)+O\left(\epsilon^{2}\right)$. This will be useful in the next part of the problem. For now, we just consider $O\left(\frac{1}{\epsilon^{2}}\right)$ terms, from which we obtain

$$
\frac{1}{\epsilon^{2}} \theta_{\tau \tau}^{0}=0 \Longrightarrow \theta_{\tau \tau}^{0}=0
$$

Following the hint to multiply by $\theta^{0}$ and integrate by parts, we obtain that

$$
\int_{0}^{2 \pi} \theta^{0} \theta_{\tau \tau}^{0} d \tau=0
$$

which implies

$$
\left.\theta^{0} \theta_{\tau}^{0}\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi}\left(\theta_{\tau}^{0}\right)^{2} d \tau=0
$$

The boundary terms are zero by the assumption that $\theta^{0}$ is $2 \pi$-periodic in $\tau$ (and so is $\theta_{\tau}^{0}$ ). Since $\left(\theta_{\tau}^{0}\right)^{2}$ is a non-negative function that integrates to zero over this domain, then it must be zero on this domain. This implies that $\theta^{0}$ is constant in $\tau$ on this domain (as it is also continuous), but due to periodicity, it is everywhere constant in $\tau$. We may thus conclude that $\theta^{0}=\theta^{0}(t)$.
(b)

Show that $\theta^{0}$ satisfies the ODE

$$
\theta_{t t}^{0}+\frac{b^{2}}{4} \sin \left(2 \theta^{0}\right)-a \sin \left(\theta^{0}\right)=0
$$

Proof. Now we compare the $O\left(\frac{1}{\epsilon}\right)$ terms. From (8) with the Taylor expansion replacement for the sine term, we have

$$
\begin{equation*}
\frac{2}{\epsilon} \theta_{t \tau}^{0}+\frac{1}{\epsilon} \theta_{\tau \tau}^{1}-\frac{b}{\epsilon} \cos (\tau) \sin \left(\theta^{0}\right)=0 \tag{9}
\end{equation*}
$$

Since $\theta^{0}$ is constant in $\tau, 2 \theta_{t \tau}^{0}=0$, and we can re-arrange to obtain

$$
\begin{equation*}
\theta_{\tau \tau}^{1}=b \cos (\tau) \sin \left(\theta^{0}\right) \tag{10}
\end{equation*}
$$

Since $\theta^{0}$ does not depend on $\tau$, we may integrate (10) in $\tau$. We then obtain

$$
\theta_{\tau}^{1}=b \sin (\tau) \sin \left(\theta^{0}\right)+A(t)
$$

Integrating again, we have

$$
\theta^{1}=-b \cos (\tau) \sin \left(\theta^{0}\right)+A(t) \tau+B(t) .
$$

Following the hint, without loss of generality, we set $A(t)$ and $B(t)$ to be zero. Then we have

$$
\begin{equation*}
\theta^{1}=-b \cos (\tau) \sin \left(\theta^{0}\right) \tag{11}
\end{equation*}
$$

Substituting (11) into (8) (with the Taylor expansion for the sine term) and just considering the $O(1)$ terms, we have

$$
\begin{aligned}
0 & =\theta_{t t}^{0}+2 \theta_{t \tau}^{1}-a \sin \left(\theta^{0}\right)+b \theta^{1} \cos (\tau) \cos \left(\theta^{0}\right) \\
& =\theta_{t t}^{0}+2\left(b \sin (\tau) \sin \left(\theta^{0}\right)\right)_{t}-a \sin \left(\theta^{0}\right)+b\left(b \cos (\tau) \sin \left(\theta^{0}\right)\right) \cos (\tau) \cos \left(\theta^{0}\right) \\
& =\theta_{t t}^{0}+2 b \sin (\tau) \cos \left(\theta^{0}\right) \theta_{t}^{0}-a \sin \left(\theta^{0}\right)+b^{2} \cos \left(\theta^{0}\right) \sin \left(\theta^{0}\right) \cos ^{2}(\tau) \\
& =\theta_{t t}^{0}+2 b \sin (\tau) \cos \left(\theta^{0}\right) \theta_{t}^{0}-a \sin \left(\theta^{0}\right)+\frac{b^{2}}{2} \sin \left(2 \theta^{0}\right) \cos ^{2}(\tau)
\end{aligned}
$$

In the last line, we used the double angle identity to replace $\cos \left(\theta^{0}\right) \sin \left(\theta^{0}\right)=\frac{1}{2} \sin \left(2 \theta^{0}\right)$. Now integrating by parts over the range $[0,2 \pi]$, we obtain

$$
\begin{aligned}
0 & =\int_{0}^{2 \pi} \theta_{t t}^{0}+2 b \sin (\tau) \cos \left(\theta^{0}\right) \theta_{t}^{0}-a \sin \left(\theta^{0}\right)+\frac{b^{2}}{2} \sin \left(2 \theta^{0}\right)+\cos ^{2}(\tau) d \tau \\
& =2 \pi\left(\theta_{t t}^{0}-a \sin \left(\theta^{0}\right)\right)+\left.\left(2 b \cos (\tau) \cos \left(\theta^{0}\right) \theta_{t}^{0}\right)\right|_{0} ^{2 \pi}+\frac{b^{2}}{2} \pi \sin \left(2 \theta^{0}\right) \\
& \left.=2 \pi\left(\theta_{t t}^{0}-a \sin \left(\theta^{0}\right)\right)\right)+\frac{b^{2}}{2} \pi \sin \left(2 \theta^{0}\right)
\end{aligned}
$$

In the second line, we used the hint that $\int_{0}^{2 \pi} \cos ^{2} x d x=\pi$ and the fact that $\theta^{0}$ does not depend on $\tau$. In the third line, we used the periodicity of cosine. Dividing through by $2 \pi$, we obtain

$$
\theta_{t t}^{0}+\frac{b^{2}}{4} \sin \left(2 \theta^{0}\right)-a \sin \left(\theta_{0}\right)=0
$$

as claimed.

