APMA 1941G Homework 6 Solutions
Lulabel Ruiz Seitz
March 5, 2024

Problem 1

Consider the equation
ul! + eul + u, =0
u(0) =1, u.(0) =1
Apply the ansatz
ue(t) = uo(t, et) + euyr (L, et) + ...

Here ue = uc(t) and uy = ug(t, 7) (where 7 = €t).

(a)

Show that u®(¢,7) = A(7) cos(t) + B(7) sin(t).

Proof. First, we evaluate

ul(t) = u) + eud + euj + 2ul

u(t) = udy + 2eud + Eul + euf, + 267Uk, + Sl
Plugging our ansatz into (1), we obtain

udy + 2eud + Eul + eul, + 220 4+ Eul 4 euleul + Eul +Sul ... =0 (2)
Comparing the O(1) terms, we obtain
udy (t, et) +ul(t, et) = 0

Solving this differential equation in ¢, exactly as in the previous homework, we obtain

u’(t,7) = A(7) cos(t) + B(7) sin(t). (3)

(b)
Find an ODE for A and B and solve it, and use that to solve for ug(t) = ug(t,et). Impose the

conditions ug(0) = 1 and u((0) = 1. Hint. Select A and B to kill the resonance terms cos(t) and
sin(t), just like we did for Duffing’s equation.

Solution. To find the ODE for A and B, we make use of the O(e) terms. We obtain

2eu?, + euy, + eu) + eut = 0. (4)
Recalling (3), we evaluate

—A(7)sint + B(7) cost
u?T = —A'(7)sint + B'(7)sint
Plugging this into (4), we obtain
up, +u' = A(T)sint — B(7) cost + 2A’(1)sint — 2B’ () cos .
Notice that we will obtain resonance if we do not choose A and B such that the right-hand side
becomes zero, since the frequency for the homogeneous equation will also be 1. We then require
24" + A=0and —2B' - B =0.

Solving this system of ODEs, we obtain A(7) = C1e~7/? and B(7) = Cze~7/2. Now we need to make
use of the given initial conditions. Since ug(0) = 1, A(0)cos(0) + B(0)sin(0) = A(0) = 1. Then
C1e® = 1, so C; = 1. Similarly, using the condition uf(0) = 1, we obtain that B(0) = 1. Then
A(1) = B(1) = e~™/2. We thus obtain

uo(t) = e~ /?(cost 4 sint). (5)
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(c)
Find the exact solution of the original ODE and compare it with the solution ug from (b). Do we
have lim_,o u€(t) = lim._q ug(t)?

Solution. We are interested in solving the ODE u” + eu’ + u = 0 subject to the initial condi-

tions «(0) = 1 and «/(0) = 1. Fix any € > 0. The characteristic equation is then A\ + e\ + 1 = 0.

This has solutions A = —§ + ¥<— E —. The general solution is then
_(67m> ,

u(t) = Che ’ + Cae

(4

Since u(0) = 1,Cy + Cy = 1. Since v/(0) =1, — <€_V€2 ) Cy — (6
and Cy algebraically, we find that

_4> Cs = 1. Solving for C

S (1+6)

Cy=—

so that our solution becomes

u(t)—< 621_4(1+;)+;)e (=4

Now considering the limit of (5),

. _ 1 —et/2 : — 1
2% uo(t) 213(1)(6 (cost +sint)) = cost + sint.

Now we can consider the limit of (6) for comparison:

i | ! oy, L) (2F) ! ey, 1), (25):
1%U<f>—11%<(M(1+2)+2)6 (= (1) )
1 1

(=
1 1 - 1 1 ..
(% + 2) (cost + isint) + (—% + 2> (cost —isint)
:iisintJrlcostJrlz'sintJrlcost

2i 2 2 2

= cost + sint.

The limits are indeed the same!



Problem 2: The Inverted Pendulum Problem

o — <a + gcos (i)) sin(6,) = 0 (1)

where a > 0 and b > 0 are constants, and 6 = 6(t). Apply the ansatz
t t
0.(t) = 6° (t, ) + 6! <t, ) + ...
€ €
where 0% = 0%(t,7) and 7 — 0%(¢, ) is 27-periodic.

(a)

Show that # does not depend on 7, that is ° = §°(¢).

Consider the equation

Proof. First, we evaluate

1
0. =9§+g02+eeg+ei
n_ 0 4 240 L o 1 1, Ly
06 = ett + Eet‘r + ?QTT + 6att + 20157' + 207'7"
Now, substituting the ansatz into (7), we obtain

2 1 1 b t
00 + =6, + 502, + eby + 20, + =01 — (a + = cos ()) sin(@° + e +..)+...=0. (8)
€ € € € €

Using a Taylor expansion for the sine term, sin(6° + g + ...) = sin(0°) + €0! cos(6°) + O(e?). This
will be useful in the next part of the problem. For now, we just consider O (6%) terms, from which
we obtain

1
=0}, =0 = 07 =0.
€

Following the hint to multiply by 6° and integrate by parts, we obtain that

2
/ 0°0°_dr =0,
0
which implies
27
§0g0 2™ — / (6°)2dr =0,
0

The boundary terms are zero by the assumption that 6° is 2r-periodic in 7 (and so is 62). Since
(62)% is a non-negative function that integrates to zero over this domain, then it must be zero on this
domain. This implies that 6° is constant in 7 on this domain (as it is also continuous), but due to
periodicity, it is everywhere constant in 7. We may thus conclude that §° = 6°(t).

(b)

Show that 69 satisfies the ODE
62
0, + T sin(20°) — asin(6°) = 0.

Proof. Now we compare the O (%) terms. From (8) with the Taylor expansion replacement for the
sine term, we have

2 1 b
=600 4+ =0 — = cos(r)sin(6°) = 0. (9)
€ € €
Since 0° is constant in 7, 20 = 0, and we can re-arrange to obtain
0 = beos(7)sin(0?). (10)
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Since 0° does not depend on 7, we may integrate (10) in 7. We then obtain
01 = bsin(7)sin(0°) + A(t).
Integrating again, we have
0! = —bcos(7)sin(0°) + A(t)T + B(t).
Following the hint, without loss of generality, we set A(t) and B(t) to be zero. Then we have

6! = —bcos(7)sin(6). (11)

Substituting (11) into (8) (with the Taylor expansion for the sine term) and just considering the O(1)
terms, we have

0 =0 + 20 — asin(6°) + b" cos(7) cos(9°)
=09 4 2(bsin(7) sin(0°)); — asin(6®) + b(bcos(7) sin(h°)) cos(r) cos(6°)

=09 4 2bsin(7) cos(0°)0? — asin(0°) + b? cos(6°) sin(6°) cos*(7)
2
=09 4 2bsin(7) cos(8°)6? — asin(8°) + % sin(26°) cos®(7).

In the last line, we used the double angle identity to replace cos(6°)sin(6°) = 1sin(26°). Now
integrating by parts over the range [0, 27], we obtain

2m 2
0= / 6%, + 2bsin(7) cos(0°)0? — asin(8°) + % sin(20%) + cos®(1)dr
0

b2
= 27(09, — asin(6°)) + (2bcos(7) cos(8)09) 2™ + 5 sin(26)

b2
= 27(69, — asin(6°))) + 57 sin(26)

In the second line, we used the hint that fOZTr cos? xdx = 7 and the fact that #° does not depend on
7. In the third line, we used the periodicity of cosine. Dividing through by 27, we obtain

b2
0% + T sin(20") — asin(fp) = 0

as claimed.



