APMA 1941G - HOMEWORK 7

Problem 1: (10 points, 5 points each)
This example concerns "Ex 4: A nonlinear oscillator with damping."
(a) Let A be the area of the region

$$
\begin{gathered}
\left\{\left(u_{0}, V\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2}\left(V^{2}\right)+\Phi\left(u_{0}\right) \leq E\right.\right\} \\
\text { Show that } A=\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta
\end{gathered}
$$

Hint: There is no Multivariable Calculus involved here, just use single-variable calculus. Also, use $\sqrt{2\left(E-\Phi\left(u_{0}\right)\right)}=\omega_{0} u_{\eta}^{0}$ as well as the change of variable $u_{0}=u_{0}(\eta)$. Finally, remember ω_{0} does not depend on η and that $\left(u_{0}\right)^{2}$ is 2π periodic and even
(b) Show that

$$
\frac{d A}{d E}=\frac{2 \pi}{\omega^{0}(E)}
$$

Hint: Use the formula of A you found in (a) that involves square roots and $a(E)$ and $b(E)$, and differentiate this with respect to E. You may use the following differentiation formula:

$$
\frac{d}{d E} \int_{a(E)}^{b(E)} f(x, E) d x=\int_{a(E)}^{b(E)} f_{E}(x, E) d x+b^{\prime}(E) f(b(E), E)-a^{\prime}(E) f(a(E), E)
$$

Problem 2: (10 points $=4+4+2$ points $)$
This problem is similar to Examples 4 and 5 in lecture, so if you're stuck, just look back at what we did in those two examples. Consider

$$
u_{\epsilon}^{\prime \prime}(t)+\omega^{2}(\epsilon t) \sin \left(u_{\epsilon}(t)\right)=0
$$

Here $u^{\epsilon}=u^{\epsilon}(t)$ and $\omega=\omega(s)>0$.
Suppose u_{ϵ} has the form

$$
u_{\epsilon}(t)=u\left(\frac{\theta(\epsilon t, \epsilon)}{\epsilon}, \epsilon t, \epsilon\right)
$$

Where $u=u(\eta, \tau, \epsilon), \theta=\theta(\tau, \epsilon)$ and $\eta \mapsto u(\eta, \tau, \epsilon)$ are 2π-periodic.
Apply the (usual) Ansatz

$$
\begin{aligned}
u & =u^{0}+\epsilon u^{1}+\cdots \\
\theta & =\theta^{0}+\epsilon \theta^{1}+\cdots
\end{aligned}
$$

Now just like the WKB method, choose θ_{0} such that

$$
\theta_{\tau}^{0}=\omega \text { and let } \omega_{0}:=\theta_{\tau}^{0}=\omega \text { and } \omega_{1}:=\theta_{\tau}^{1}
$$

(a) Let E be the energy

$$
E(\tau, \eta)=\frac{1}{2}\left(u_{\eta}^{0}\right)^{2}-\cos \left(u^{0}\right)
$$

Show, using the $O(1)$-terms, that $E=E(\tau)$
(b) Differentiate the $O(1)$-terms with respect to θ and let $W=u_{\eta}^{0}$ to show that W solves a linear PDE in W. Then multiply the $O(\epsilon)$-terms by $W=u_{\eta}^{0}$ and integrate by parts and show that

$$
\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta=C
$$

(c) Finally, calculate θ_{0} in terms of ω

Note: Just like in Example 5 (Nonlinear Wave equation), it turns out that we can solve the three equations in (a), (b), (c) to find u_{0}, ω_{0} and θ_{0}

