APMA 1941G - HOMEWORK 8

Problem 1: $(10=4+4+2$ points $)$
For this problem, you may use the following integration-by-parts formula, assuming the boundary terms are 0

$$
\int_{W} D f \cdot D g d \mathbf{x}=-\int_{W} \operatorname{div}(D f) g d \mathbf{x}
$$

(a) Suppose u is a minimizer of

$$
I[u]=\int_{W} \frac{1}{2}|D u|^{2}+f(u)+|\mathbf{x}|^{2} d \mathbf{x}
$$

Where $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}, W \subseteq \mathbb{R}^{n}$ and $f=f(s)$ and $^{\prime}=\frac{d}{d s}$

Mimic the derivation of the Euler-Lagrange equation to show

$$
-\Delta u+f^{\prime}(u)=0
$$

(b) This part refers to Example 7 (An Eikonal/Continuity PDE):

Suppose that a^{0} and θ^{0} minimize $I^{0}\left[a^{0}, \theta^{0}\right]$
By doing a variation in θ^{0} show that θ^{0} must satisfy the equation

$$
-\operatorname{div}\left(\left(a_{0}\right)^{2} D \theta^{0}\right)=0
$$

(c) Let f and ϕ be fixed functions. Find $L=L(p, z, x)$ so that

$$
-\Delta u+D \phi \cdot D u=f(x)
$$

Is the Euler-Lagrange equation corresponding to the functional

$$
I[u]=\int_{W} L(D u, u, x) d x
$$

Hint: First find a Lagrangian for the simpler $\operatorname{PDE}-\Delta u=f$. Then, to solve our original problem, multiply the Lagrangian you just found by a simple exponential term involving ϕ

Problem 2: $(10=4+4+2$ points $)$

Consider the following ODE on $(0,1)$.

$$
\left\{\begin{array}{r}
\epsilon u_{\epsilon}^{\prime \prime}+u_{\epsilon}^{\prime}+u_{\epsilon}=0 \\
u_{\epsilon}(0)=0, \quad u_{\epsilon}(1)=1
\end{array}\right.
$$

Apply the Ansatz

$$
u^{\epsilon}(x)=u^{0}\left(x, \frac{x}{\epsilon}\right)+\epsilon u^{1}\left(x, \frac{x}{\epsilon}\right)+\cdots
$$

Where $u^{k}=u^{k}(x, \tau)$
(a) Find the $O\left(\frac{1}{\epsilon}\right)$ terms to get a formula for $u^{0}(x, \tau)$ in terms of constants $A(x)$ and $B(x)$
(b) Find the $O(1)$-terms to get an ODE of u^{1} in terms of u^{0}. Kill the resonance terms to find (the general form of) $A(x)$ and $B(x)$
(c) Finally, impose the conditions $u^{0}(0)=0$ and $u^{0}(1)=1$ to find an explicit formula for $u^{0}(x)=u^{0}\left(x, \frac{x}{\epsilon}\right)$

