APMA 1941G - MIDTERM

Problem 1: (10 points)
Consider the following ODE, where $u_{\epsilon}=u_{\epsilon}(t)$

$$
u_{\epsilon}^{\prime \prime}(t)-\epsilon \cos (t) \sin \left(u_{\epsilon}(t)\right)=0
$$

Let our Ansatz be:

$$
u_{\epsilon}=u_{0}(t, \epsilon t)+\epsilon u_{1}(t, \epsilon t)+\cdots
$$

Where $u_{k}=u_{k}(t, \tau)$ and $t \mapsto u_{k}(t, \tau)$ is 2π periodic
(a) Use the $O(1)$ terms to show that $u_{0}=u_{0}(\tau)$

That is u_{0} does not depend on t
(b) Use the $O(\epsilon)$ terms to show that $u_{1}=-\sin \left(u_{0}(\tau)\right) \cos (t)$ You may set any constants you may find equal to 0
(c) Use the $O\left(\epsilon^{2}\right)$ terms to conclude $u_{\tau \tau}^{0}+\frac{1}{2} \sin \left(u_{0}\right) \cos \left(u_{0}\right)=0$ You may use without proof that $\int_{0}^{2 \pi} \cos ^{2}(t) d t=\pi$

(TURN PAGE)

Problem 2: (6 points)
Note: Try your best to do this problem without looking at the HW
The general Laplace method says that:
If ϕ is a smooth function that has a max at x_{0} with $\phi^{\prime}\left(x_{0}\right)=0$ and $\phi^{\prime \prime}\left(x_{0}\right)<0$, and $a(x)$ is any smooth function (not necessarily with compact support), then, as $\epsilon \rightarrow 0$

$$
\int_{0}^{\infty} a(x) e^{\frac{\phi(x)}{\epsilon}} d x=\sqrt{\frac{2 \pi \epsilon}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} e^{\frac{\phi\left(x_{0}\right)}{\epsilon}} a\left(x_{0}\right)(1+o(1))
$$

Use Laplace's method to show that, as $n \rightarrow \infty$

$$
n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Here $f \sim g$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$
Make sure to specify which ϕ, x_{0}, a and ϵ you're using
Hint: Start with the identity (you don't have to prove this)

$$
(n-1)!=\int_{0}^{\infty} e^{-t} t^{n-1} d t
$$

And use the substitution $s=\frac{t}{n}$
Make sure to keep a $\left(\frac{1}{s}\right) d s$ in your integral
(TURN PAGE)

Problem 3: (4 points)
Using the definition of asymptotic expansions, show that if

$$
f(\epsilon) \sim \sum_{n=0}^{\infty} a_{n} \epsilon^{n} \quad \text { and } \quad g(\epsilon) \sim \sum_{n=0}^{\infty} b_{n} \epsilon^{n}
$$

And both f, g and their asymptotic expansions are bounded, then

$$
f(\epsilon) g(\epsilon) \sim \sum_{n=0}^{\infty} c_{n} \epsilon^{n} \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

You may use (without proof) the following hints:

Hint 1:

$$
\sum_{k=0}^{n} \sum_{i=0}^{k} a_{i} b_{k-i} \epsilon^{k}=\sum_{k=0}^{n} \sum_{i=0}^{n-k} a_{i} b_{k} \epsilon^{i+k}
$$

Note: This is a discrete version of the change of variables $u=i$ and $v=k-i$

Hint 2: In general (this is just foiling out)

$$
\left(\sum_{m=0}^{n} x_{m}\right)\left(\sum_{k=0}^{n} y_{n}\right)=\sum_{m=0}^{n} \sum_{k=0}^{n} x_{m} y_{n}
$$

Also remember that if $m>n$ then $\epsilon^{m}=o\left(\epsilon^{n}\right)$ For example $\epsilon^{3}=o\left(\epsilon^{2}\right)$

