## APMA 0350 - HOMEWORK 10

Problem 1: (5 points) Find the (real) equilibrium points of

$$
\left\{\begin{array}{l}
x^{\prime}=y-x^{2} y \\
y^{\prime}=y^{2} x-4 x^{2}
\end{array}\right.
$$

Problem 2: (5 points) Find and classify the equilibrium points of

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+x^{2} \\
y^{\prime}=x+y
\end{array}\right.
$$

Problem 3: (5 points) Find and classify the equilibrium points of

$$
\left\{\begin{array}{l}
x^{\prime}=x(3-x-2 y) \\
y^{\prime}=y(2-x-y)
\end{array}\right.
$$

Problem 4: $(5=2+3$ points, Application $)$
You work as a consultant for PeyAlamo, a car rental company that has distributors in Atlanta and Boston. Travelers may rent a car in one city and return it either at the same location or the other city.

Suppose $40 \%$ of the cars rented in Atlanta are returned in Boston per day, and $20 \%$ of cars rented in Boston are returned in Atlanta per day. Let $x(t)$ and $y(t)$ be the number of cars in Atlanta and Boston respectively, where $t$ is in days. Assume no other cars go in and out of the two cities.
(a) Set up a system of ODE model for $x(t)$ and $y(t)$
(b) Find the equilibrium points of the system in (a) and their stability. Do not solve the system

