HOMEWORK 7 SOLUTIONS

Problem 1. Find the Laplace transform of

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 2 & \text { if } 2 \leq t<5 \\ 7-t & \text { if } 5 \leq t<7 \\ 0 & \text { if } t \geq 7\end{cases}
$$

Start with t

At $t=2$ jump by $2-t=-(t-2)$
At $t=5$ jump by $(7-t)-2=5-t=-(t-5)$

At $t=7$ jump by $0-(7-t)=t-7$

$$
f(t)=t-(t-2) u_{2}(t)-(t-5) u_{5}(t)+(t-7) u_{7}(t)
$$

Therefore:

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}\{t\}-\mathcal{L}\left\{(t-2) u_{2}(t)\right\}-\mathcal{L}\left\{(t-5) u_{5}(t)\right\}+\mathcal{L}\left\{(t-7) u_{7}(t)\right\} \\
& =\left(\frac{1}{s^{2}}\right)-e^{-2 s} \mathcal{L}\{t\}-e^{-5 s} \mathcal{L}\{t\}+e^{-7 s} \mathcal{L}\{t\} \\
& =\left(\frac{1}{s^{2}}\right)-e^{-2 s}\left(\frac{1}{s^{2}}\right)-e^{-5 s}\left(\frac{1}{s^{2}}\right)+e^{-7 s}\left(\frac{1}{s^{2}}\right) \\
& =\frac{1}{s^{2}}\left(1-e^{-2 s}-e^{-5 s}+e^{-7 s}\right)
\end{aligned}
$$

Problem 2. Find a function whose Laplace transform is

$$
\begin{aligned}
& \frac{8}{s^{2}-4 s+4} \\
& =\frac{8}{(s-2)^{2}}
\end{aligned}
$$

First notice that

$$
\mathcal{L}^{-1}\left\{\frac{8}{s^{2}}\right\}=8 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=8 t
$$

Recall the shifting fact: if

$$
\mathcal{L}\{f(t)\}=F(s),
$$

then

$$
\mathcal{L}\left\{e^{c t} f(t)\right\}=F(s-c)
$$

Therefore, because

$$
\mathcal{L}\{8 t\}=\frac{8}{s^{2}},
$$

we have

$$
\mathcal{L}\left\{8 t e^{2 t}\right\}=\frac{8}{(s-2)^{2}}
$$

So the desired function is $f(t)=8 t e^{2 t}$.
Problem 3. Find a function whose Laplace transform is

$$
\begin{aligned}
& \frac{(s-1) e^{-3 s}}{s^{2}-4 s+5} \\
= & e^{-3 s} \frac{s-1}{(s-2)^{2}+1} .
\end{aligned}
$$

Notice that $s-1-1+1=(s-2)+2$, so the above expression can be rewritten as

$$
\begin{equation*}
e^{-3 s} \frac{(s-2)+1}{(s-2)^{2}+1}=e^{-3 s}\left(\frac{s-2}{(s-2)^{2}+1}+\frac{1}{(s-2)^{2}+1}\right) \tag{1}
\end{equation*}
$$

Notice that the expressions $\frac{s-2}{(s-2)^{2}+1}$ and $\frac{1}{(s-2)^{2}+1}$ are the expressions $\frac{s}{s^{2}+1}$ and $\frac{1}{s^{2}+1}$ shifted by 2 . We know that

$$
\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}=\mathcal{L}\{\cos (t)+\sin (t)\}
$$

and therefore

$$
\frac{s-2}{(s-2)^{2}+1}+\frac{1}{(s-2)^{2}+1}=\mathcal{L}\left\{e^{2 t} \cos (t)+e^{2 t} \sin (t)\right\} .
$$

Therefore, (1) can be rewritten as

$$
e^{-3 s} \mathcal{L}\left\{e^{2 t} \cos (t)+e^{2 t} \sin (t)\right\}
$$

and using the rule for exponentials outside of the Laplace transform, this is equal to

$$
\mathcal{L}\left\{e^{2(t-3)} \cos (t-3) u_{3}(t)+e^{2(t-3)} \sin (t-3) u_{3}(t)\right\} .
$$

Thus the desired function is $f(t)=e^{2(t-3)} \cos (t-3) u_{3}(t)+$ $e^{2(t-3)} \sin (t-3) u_{3}(t)$.

Problem 4. Solve

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=3 \sin (t)-3 u_{2 \pi}(t) \sin (t-2 \pi) \\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.
$$

We first take the Laplace transform of the above equation:
$\mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\{y\}=3 \mathcal{L}\{\sin (t)\}-3 \mathcal{L}\left\{u_{2 \pi}(t) \sin (t-2 \pi)\right\}$. Recall that

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)
$$

so using the initial conditions, we have

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0) \\
=s^{2} \mathcal{L}\{y\} .
\end{gathered}
$$

Also notice that

$$
\mathcal{L}\{\sin (t)\}=\frac{1}{s^{2}+1},
$$

and by the shift rule,

$$
\begin{aligned}
& \mathcal{L}\left\{u_{2 \pi}(t) \sin (t-2 \pi)\right\}=e^{-2 \pi s} \mathcal{L}\{\sin (t)\} \\
&=\frac{e^{-2 \pi s}}{s^{2}+1}
\end{aligned}
$$

Substituting (3), (4), and (5) into (2), we have

$$
\begin{gathered}
\left(s^{2}+4\right) \mathcal{L}\{y\}=\frac{3}{s^{2}+1}\left(1-e^{-2 \pi s}\right) \\
\Longrightarrow \\
\mathcal{L}\{y\}=\frac{3}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\left(1-e^{-2 \pi s}\right) .
\end{gathered}
$$

We can finally solve for y using partial fractions.

$$
\begin{gathered}
\frac{3}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4} \\
\Longrightarrow 3=(A s+B)\left(s^{2}+4\right)+(C s+D)\left(s^{2}+1\right) \\
=A s^{3}+B s^{2}+4 A s+4 B+C s^{3}+D s^{2}+C s+D
\end{gathered}
$$

s^{3} terms:

$$
\begin{gathered}
0 s^{3}=(A+C) s^{3} \\
\Longrightarrow A+C=0 \\
\Longrightarrow A=-C
\end{gathered}
$$

s^{2} terms:

$$
\begin{gathered}
0 s^{2}=(B+D) s^{2} \\
\Longrightarrow B+D=0 \\
\Longrightarrow B=-D
\end{gathered}
$$

s terms:

$$
\begin{aligned}
& 0 s=(4 A+C) \\
& \Longrightarrow 4 A+C=0 \\
& \Longrightarrow 4 A=-C
\end{aligned}
$$

Because we also know that $A=-C$, this implies that $A=C=$ 0 . Constant terms:

$$
\begin{gathered}
3=4 B+D \\
\Longrightarrow D=3-4 B
\end{gathered}
$$

Recall that $B=-D$, so

$$
D=3+4 D
$$

$$
\begin{gathered}
\Longrightarrow-3 D=3 \\
\Longrightarrow D=-1 \\
\Longrightarrow B=1
\end{gathered}
$$

We thus have that

$$
\frac{3}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{1}{s^{2}+1}-\frac{1}{s^{2}+4},
$$

so we have

$$
\begin{aligned}
& \mathcal{L}\{y\}=\left(1-e^{-2 \pi s}\right)\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}+4}\right) \\
& =\left(1-e^{-2 \pi s}\right) \mathcal{L}\left\{-\frac{1}{2} \sin (2 t)+\sin (t)\right\} .
\end{aligned}
$$

For the clarity of the next step, let $h(t)$ denote the argument of the Laplace transform in the above expression, i.e. $h(t):=$ $-\frac{1}{2} \sin (2 t)+\sin (t)$. We have

$$
\begin{aligned}
& \mathcal{L}\{y\}=\left(1-e^{-2 \pi s}\right) \mathcal{L}\{h(t)\} \\
& =\mathcal{L}\{h(t)\}-e^{-2 \pi s} \mathcal{L}\{h(t)\},
\end{aligned}
$$

and using the shift rule on the second term in this expression, this is equal to

$$
\begin{aligned}
& \mathcal{L}\{h(t)\}-\mathcal{L}\left\{h(t-2 \pi) u_{2 \pi}(t)\right\} \\
& =\mathcal{L}\left\{h(t)-h(t-2 \pi) u_{2 \pi}(t)\right\} .
\end{aligned}
$$

Therefore, we have that

$$
y=h(t)-h(t-2 \pi) u_{2 \pi}(t) .
$$

Plugging in $-\frac{1}{2} \sin (2 t)+\sin (t)$ for $h(t)$, we have

$$
y=-\frac{1}{2} \sin (2 t)+\sin (t)+\left[\frac{1}{2} \sin (2(t-2 \pi))-\sin (t-2 \pi)\right] u_{2 \pi}(t) .
$$

