APMA 0350 - HOMEWORK 8

Problem 1: (2 points) Write the ODE in the form $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{f}$

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}+y=5 t
$$

Do NOT solve it!
Problem 2: $(6=3+3$ points $)$ Solve the following systems. Do NOT draw a phase portrait
(a)

$$
\mathrm{x}^{\prime}=A \mathrm{x} \text { where } A=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right]
$$

(b)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \quad \text { and } \mathbf{x}(0)=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Problem 3: (4 points) Solve the system and draw a phase portrait by hand

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]
$$

Problem 4: (4 points) Solve $y^{\prime \prime}-5 y^{\prime}+6 y=0$ by writing it as a system $\mathrm{x}^{\prime}=A \mathrm{x}$ and solving that system. Do NOT use another method to solve this.

Hint: First solve for \mathbf{x} and then use the fact that $y=x_{1}(t)$
(TURN PAGE)

Problem 5: (4 points) Consider the following system of interconnected tanks that have an inflow and outflow of salt-water mixture.
$4 \mathrm{~L} / \mathrm{min}$ water with $1 / 2 \mathrm{~kg} / \mathrm{L}$ salt

$1 \mathrm{~L} /$ min
$3 \mathrm{~L} / \mathrm{min}$ water with
$1 \mathrm{~kg} / \mathrm{L}$ salt

6 L/min

Set up but do NOT solve a system of ODE of the form

$$
\mathbf{Q}^{\prime}(t)=A \mathbf{Q}(t)+\mathbf{b}
$$

Where $\mathbf{Q}(t)=\left[\begin{array}{l}Q_{1}(t) \\ Q_{2}(t)\end{array}\right]$ with $Q_{1}(t)$ the amount of salt in tank 1 and $Q_{2}(t)$ the amount of salt in tank 2 and \mathbf{b} is a constant vector (TURN

PAGE)

Note: For simplicity, assume that the amount of water in each tank is constant.

Hint: For each tank, carefully think about how much salt goes in/out and whether that amount depends on Q_{1} or Q_{2} or not. It might help to think in terms of units, you want $\mathrm{kg} /$ min everywhere.

