APMA 0359 - Homework 8 Solutions

November 20, 2023

1. Write the ODE in the form $x^{\prime}=A x+f$

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}+y=5 t .
$$

Do NOT solve it!

Solution: This problem is useful for writing differential equations in the matrix form

$$
x=A x+f
$$

where x and f are vectors and A is a matrix. Given the ODE

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}+y=5 t
$$

we can assign new variables to replace the derivatives (n variables for n derivatives). For three derivatives, we write

$$
\begin{aligned}
x_{1}=y & \Longrightarrow x_{1}^{\prime}=y^{\prime}=x_{2} \\
x_{2}=y^{\prime} & \Longrightarrow x_{2}^{\prime}=y^{\prime \prime}=x_{3} . \\
x_{3}=y^{\prime \prime} & \Longrightarrow x_{3}^{\prime}=y^{\prime \prime \prime}
\end{aligned}
$$

We can rewrite the ODE in terms of our variables, we get

$$
x_{3}^{\prime}=-x_{1}+4 x_{2}-2 x_{3} .
$$

Thus, we arrive at the matrix equation

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 4 & -2
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
5 t
\end{array}\right] .
$$

2. Solve the following systems. Do NOT draw a phase portrait
(a)

$$
x^{\prime}=A x \quad \text { where } A=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right]
$$

Solution: We start by finding the eigenvalues of the matrix. We see that

$$
\begin{aligned}
\operatorname{det}|A-\lambda I| & =\operatorname{det}\left[\begin{array}{cc}
1-\lambda & -2 \\
3 & -4-\lambda
\end{array}\right]=\quad(1-\lambda)(-4-\lambda)-(-2)(3) \\
& =-4-\lambda+4 \lambda+\lambda^{2}+6 \\
& =\lambda^{2}+3 \lambda+2 \\
& =(\lambda+1)(\lambda+2)
\end{aligned}
$$

Thus, we have the eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=-2$.

Next, we find the corresponding eigenvectors

$$
\begin{aligned}
\operatorname{Nul}(A-1 I) & =\left[\begin{array}{cc|c}
1-(-1) & -2 & 0 \\
3 & -4-(-1) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
2 & -2 & 0 \\
3 & -3 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
i. $R_{2}=1 / 3 R_{2}$
ii. $R_{1}=1 / 2 R_{1}$
iii. $R_{2}=R_{2}-R_{1}$

Then we see that $x-y=0 \Longrightarrow x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Similarly for $\lambda_{2}=2$, we find

$$
\begin{aligned}
\operatorname{Nul}(A-1 I) & =\left[\begin{array}{cc|c}
1-(-2) & -2 & 0 \\
3 & -4-(-2) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
3 & -2 & 0 \\
3 & -2 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
i. $R_{2}=R_{2}-R_{1}$,
we see that $3 x-2 y=0 \Longrightarrow 3 x=2 y$. Thus, setting $x=2$, then we get the corresponding eigenvector $\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Finally, we obtain the solution

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

(b)

$$
x^{\prime}=A x \quad \text { where } A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \text { and } x(0)=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Solution: We start by finding the eigenvalues of the matrix. We see that

$$
\begin{aligned}
\operatorname{det}|A-\lambda I| & =\operatorname{det}\left[\begin{array}{cc}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right]=\quad(5-\lambda)(1-\lambda)-(-1)(3) \\
& =5-5 \lambda-\lambda+\lambda^{2}-3 \\
& =\lambda^{2}-6 \lambda-8 \\
& =(\lambda-2)(\lambda-4)
\end{aligned}
$$

Thus, we have the eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=4$.

Next, we find the corresponding eigenvectors

$$
\begin{aligned}
\operatorname{Nul}(A-2 I) & =\left[\begin{array}{cc|c}
5-2 & -1 & 0 \\
3 & 1-2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
i. $R_{2}=R_{2}-R_{1}$

Then we see that $3 x-y=0 \Longrightarrow 3 x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
Similarly for $\lambda_{2}=4$, we find

$$
\begin{aligned}
\operatorname{Nul}(A-4 I) & =\left[\begin{array}{cc|c}
5-4 & -1 & 0 \\
3 & 1-4 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
i. $R_{2}=1 / 3 R_{2}$
ii. $R_{2}=R_{2}-R_{1}$,
we see that $x-y=0 \Longrightarrow x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Finally, we obtain the solution

$$
x(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We then use the initial condition $x(0)=\left[\begin{array}{c}2 \\ -1\end{array}\right]$.

Thus, we see that

$$
\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Using the row operations
i. $R_{2}+\left(-3 R_{1}\right)$
ii. $R_{2}=R_{2} /(-2)$
iii. $R_{1}=R_{1}+\left(-R_{2}\right)$

We find $c_{1}=-3 / 2$ and $c_{2}=7 / 2$. Thus, the final solution can be written as

$$
x(t)=-\frac{3}{2} e^{2 t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\frac{7}{2} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

3. Solve the system and draw a phase portrait by hand for

$$
x^{\prime}=A x \text { where } A=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]
$$

Solution: We start by finding the eigenvalues of the matrix. We see that

$$
\begin{aligned}
\operatorname{det}|A-\lambda I| & =\operatorname{det}\left[\begin{array}{cc}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right]=\quad(3-\lambda)(-2-\lambda)-(-2)(2) \\
& =-6-3 \lambda+2 \lambda+\lambda^{2}+4 \\
& =\lambda^{2}-\lambda-2 \\
& =(\lambda+1)(\lambda-2)
\end{aligned}
$$

Thus, we have the eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=2$.

Next, we find the corresponding eigenvectors

$$
\begin{aligned}
\operatorname{Nul}(A-1 I) & =\left[\begin{array}{cc|c}
3-(-1) & -2 & 0 \\
2 & -2-(-1) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
4 & -2 & 0 \\
2 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
(a) $R_{1}=1 / 2 R_{1}$
(b) $R_{2}=R_{2}-R_{1}$

Then we see that $2 x-y=0 \Longrightarrow 2 x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Similarly for $\lambda_{2}=2$, we find

$$
\begin{aligned}
\operatorname{Nul}(A-1 I) & =\left[\begin{array}{cc|c}
3-(2) & -2 & 0 \\
2 & -2-(2) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
1 & -2 & 0 \\
2 & -4 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
(a) $R_{2}=1 / 2 R_{2}$
(b) $R_{2}=R_{2}-R_{1}$

Then we see that $x-2 y=0 \Longrightarrow x=2 y$. Thus, setting $x=2$, then we get the corresponding eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Finally, we obtain the solution

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

and the phase portrait should resemble the following plot, but should be done by hand:

4. Solve $y^{\prime \prime}-5 y^{\prime}+6 y=0$ by writing it as a system $x^{\prime}=A x$ and solving that system. Do NOT use another method to solve this.

Solution: Since we have two derivatices, we use two varilables and find

$$
\begin{array}{r}
x_{1}=y \Longrightarrow x_{1}^{\prime}=x_{2} \\
x_{2}=y^{\prime} \Longrightarrow x_{2}^{\prime}=5 x_{2}-6 x_{1} .
\end{array}
$$

Thus, we arrive at the system

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

We start by finding the eigenvalues of the matrix. We see that

$$
\begin{aligned}
\operatorname{det}|A-\lambda I| & =\operatorname{det}\left[\begin{array}{cc}
0-\lambda & 1 \\
-6 & 5-\lambda
\end{array}\right] \\
& =-5 \lambda+\lambda^{2}-6 \\
& =\lambda^{2}-5 \lambda-6 \\
& =(\lambda-3)(\lambda-2)
\end{aligned}
$$

Thus, we have the eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=2$.

Next, we find the corresponding eigenvectors

$$
\begin{aligned}
\operatorname{Nul}(A-3 I) & =\left[\begin{array}{cc|c}
3 & -1 & 0 \\
-6 & 5-(3) & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
3 & -1 & 0 \\
-6 & 2 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
(a) $R_{2}=-1 / 2 R_{2}$
(b) $R_{2}=R_{2}-R_{1}$

Then we see that $3 x-y=0 \Longrightarrow 3 x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
Similarly for $\lambda_{2}=2$, we find

$$
\begin{aligned}
\operatorname{Nul}(A-2 I) & =\left[\begin{array}{cc|c}
2 & -1 & 0 \\
-6 & 5-(2) & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
2 & -1 & 0 \\
-6 & 3 & 0
\end{array}\right]
\end{aligned}
$$

Then using the row operations
(a) $R_{2}=-1 / 3 R_{2}$
(b) $R_{2}=R_{2}-R_{1}$

Then we see that $2 x-y=0 \Longrightarrow 2 x=y$. Thus, setting $x=1$, then we get the corresponding eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Finally, we obtain the solution

$$
x(t)=c_{1} e^{3 t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Since $x_{1}(t)=y(t) \Longrightarrow y(t)=c_{1} e^{3 t}+c_{2} e^{2 t}$.
5. Consider the following system of interconnected tanks that have an inflow and outflow of salt-water mixture.

Set up but do NOT solve a system of ODEs of the form

$$
Q^{\prime}(t)=A Q(t)+b
$$

where $Q(t)=\left[\begin{array}{l}Q_{1}(t) \\ Q_{2}(t)\end{array}\right]$ with $Q_{1}(t)$ as the amount of salt in tank 1 and $Q_{2}(t)$ as the amount of salt in tank 2 and b as a constant vector.
Note: For simplicity, assume that the amount of water in each tank is constant.
Hint: For each tank, carefully think about how much salt goes in/out and whether that amount depends on Q_{1} or Q_{2} or not. It might help to think in terms of units, you want $\mathrm{kg} / \mathrm{min}$ everywhere.

Solution: We can write out

$$
Q_{1}^{\prime}=4[\mathrm{~L} / \min] \cdot 1 / 2[\mathrm{~kg} / \mathrm{L}]=-5[\mathrm{~L} / \min] \cdot \frac{Q_{1}}{V_{1}}[\mathrm{~kg} / \mathrm{L}]+1[\mathrm{~L} / \min] \cdot \frac{Q_{2}}{V_{2}}[\mathrm{~kg} / \mathrm{L}]
$$

Thus, since $V_{1}=20$ and $V_{2}=10$, we find

$$
Q_{1}^{\prime}=2-\frac{Q_{1}}{4}+\frac{Q_{2}}{10}
$$

Similarly for Q_{2}, we find

$$
Q_{2}^{\prime}=3-\frac{7 Q_{2}}{10}+\frac{Q_{1}}{5}
$$

Therefore, our system can be written as

$$
\left[\begin{array}{l}
Q_{1}^{\prime} \\
Q_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 / 4 & 1 / 10 \\
1 / 5 & -7 / 10
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

