APMA 0350 - HOMEWORK 9

Problem 1: (8 points, 4 points each) Solve the following systems and draw a phase portrait
(a)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]
$$

(b)

$$
\mathrm{x}^{\prime}=A \mathrm{x} \quad A=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]
$$

Problem 2: (8 points, 4 points each) Solve the following systems. Do NOT draw a phase portrait
(a)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(b)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{ll}
3 & -2 \\
8 & -5
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Note: Write your solution in (b) in the form $e^{\lambda t}\left[\begin{array}{l}a t+b \\ c t+d\end{array}\right]$ where a, b, c, d are integers

Problem 3: (4 points) Use variation of parameters to find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$ where

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \quad \mathbf{f}=e^{t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

