LECTURE: REPEATED EIGENVALUES

Today: The next case to consider is repeated eigenvalues

1. Repeated Eigenvalues

Example 1:

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ and draw the phase portrait, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]
$$

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
1-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right| \\
& =(1-\lambda)(3-\lambda)-(1)(-1) \\
& =3-\lambda-3 \lambda+\lambda^{2}+1 \\
& =\lambda^{2}-4 \lambda+4 \\
& =(\lambda-2)^{2}
\end{aligned}
$$

Which gives $\lambda=2$ (repeated eigenvalue)
STEP 2: $\lambda=2$

$$
\begin{gathered}
\operatorname{Nul}(A-2 I)=\left[\begin{array}{cc|c}
1-2 & 1 & 0 \\
-1 & 3-2 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
-1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
-x+y=0 \Rightarrow y=x \text { and therefore } \mathbf{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\lambda=2 \rightsquigarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

OH NO!!! There is just one eigenvector, what do we do now?
First Guess: $\mathbf{x}(t)=C_{1} e^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ but there should be a C_{2} there
Second Guess: $\mathbf{x}(t)=C_{1} e^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2} t e^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ but this is WRONG

STEP 3:

Trick: Instead of solving $(A-2 I) \mathbf{v}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ solve

$$
\begin{gathered}
(A-2 I) \mathbf{w}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \rightsquigarrow \text { Eigenvector } \\
{\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow-x+y=1 \Rightarrow y=1+x \text { and so }} \\
\mathbf{w}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
1+x
\end{array}\right]=\left[\begin{array}{l}
x \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightsquigarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

STEP 4: Correct Solution (see below why)

Fact:

$$
\mathbf{x}(t)=C_{1} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left(t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Note: $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is called a generalized eigenvector and is a great substitute when not enough eigenvectors are available.

Warning: While it is ok to rescale eigenvectors, like $\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right] \stackrel{\times 2}{\rightsquigarrow}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ do NOT rescale generalized eigenvectors, don't turn $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ into $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ STEP 5: Phase portrait:

How to draw the phase portrait:

- The main axis is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Because of the $e^{2 t}$ term, solutions on that axis move away from the origin.
- The other solutions curve outwards and eventually they become parallel to $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ because the $t e^{2 t}$ term is much bigger than the other $e^{2 t}$ terms

Note: The $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ vector plays no role in the phase portrait.
Note: One way to check whether the picture is correct is to pick any initial condition, say $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (any other non-eigenvector is fine too) and then by the ODE, we have

$$
\mathbf{x}^{\prime}(0)=A \mathbf{x}(0)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \Rightarrow \mathbf{x}^{\prime}(0)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Therefore at the point $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ the solutions move in the $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ direction. This is illustrated in the picture with the black arrow that moves in the southeast direction.

2. Why this works

Let's see why we need to solve $(A-2 I) \mathbf{w}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Since it is not enough to assume that $\mathbf{x}(t)=t e^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ let's suppose

$$
\mathbf{x}(t)=t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t} \mathbf{w} \quad \mathbf{w} \text { TBA }
$$

To find an equation for \mathbf{w}, plug into the ODE

$$
\begin{aligned}
\mathbf{x}^{\prime} & =A \mathbf{x} \\
\left(t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t} \mathbf{w}\right)^{\prime} & =A\left(t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t} \mathbf{w}\right) \\
\left(t e^{2 t}\right)^{\prime}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(e^{2 t}\right)^{\prime} \mathbf{w} & =t e^{2 t} A\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t} \mathbf{w} \\
e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t e^{2 t} 2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2 e^{2 t} \mathbf{w} & =t e^{2 t} 2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t} A \mathbf{w}
\end{aligned}
$$

Here we used $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]$ since $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to $\lambda=2$

We therefore get:

$$
\begin{aligned}
e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2 e^{2 t} \mathbf{w} & =e^{2 t} A \mathbf{w} \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2 \mathbf{w} } & =A \mathbf{w} \\
A \mathbf{w}-2 \mathbf{w} & =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
(A-2 I) \mathbf{w} & =\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Therefore w has to be a generalized eigenvector of A corresponding to $\lambda=2$

Note: For a more direct way of finding $\mathbf{x}(t)$ you can use the "matrix exponential" $e^{A t}$ which is the matrix analog of the exponential function $e^{a t}$. This is beyond the scope of this lecture.

3. Initial Conditions

Example 2: (more practice)

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ with $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ where $A=\left[\begin{array}{cc}-1 & -1 \\ 4 & -5\end{array}\right]$

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
-1-\lambda & -1 \\
4 & -5-\lambda
\end{array}\right| \\
& =(-1-\lambda)(-5-\lambda)-(-1)(4) \\
& =5+\lambda+5 \lambda+\lambda^{2}+4 \\
& =\lambda^{2}+6 \lambda+9 \\
& =(\lambda+3)^{2}
\end{aligned}
$$

Which gives $\lambda=-3$
STEP 2: $\lambda=-3$
$\operatorname{Nul}(A-(-3) I)=\left[\begin{array}{cc|c}-1-(-3) & -1 & 0 \\ 4 & -5-(-3) & 0\end{array}\right]=\left[\begin{array}{ll|l}2 & -1 & 0 \\ 4 & -2 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}2 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
2 x-y= & 0 \Rightarrow y=2 x \text { and so } \\
\lambda & =-3 \rightsquigarrow\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

STEP 3: Generalized Eigenvector

$$
\begin{gathered}
(A-(-3) I) \mathbf{w}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
{\left[\begin{array}{ll|l}
2 & -1 & 1 \\
4 & -2 & 2
\end{array}\right] \xrightarrow{(\div 2) R_{2}}\left[\begin{array}{ll|l}
2 & -1 & 1 \\
2 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Hence $2 x-y=1 \Rightarrow y=2 x-1$ and so

$$
\mathbf{w}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x-1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \rightsquigarrow\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

WARNING: Do NOT rescale this to $\left[\begin{array}{l}0 \\ 1\end{array}\right]!!!$

STEP 4: Solution

$$
\mathbf{x}(t)=C_{1} e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left(t e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+e^{-3 t}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)
$$

(The phase portrait would be like the previous example, but with the arrows reversed)

STEP 5: Initial Condition

$$
\begin{gathered}
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
C_{1} e^{0}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left(0 e^{0}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+e^{0}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
C_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
\left\{\begin{array} { r }
{ C _ { 1 } = 2 } \\
{ 2 C _ { 1 } - C _ { 2 } = 3 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ C _ { 1 } = 2 } \\
{ C _ { 2 } = 2 C _ { 1 } - 3 = 2 (2) - 3 = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
C_{1}=2 \\
C_{2}=1
\end{array}\right.\right.\right.
\end{gathered}
$$

$$
\mathbf{x}(t)=2 e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1\left(t e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+e^{-3 t}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)=e^{-3 t}\left[\begin{array}{c}
2+t \\
3+2 t
\end{array}\right]
$$

App: pplane app

Just like direction fields, in practice you draw phase portraits with the help of a computer.

Example 3:

$$
\mathrm{x}^{\prime}=A \mathrm{x} \text { where } A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

Recall that the solution was: $\mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

To plot it using the pplane app, you write this as

$$
\left\{\begin{array}{l}
x^{\prime}=x+3 \star y \\
y^{\prime}=3 \star x+y
\end{array}\right.
$$

The arrows tell you where the solutions are going.

And by clicking, you can plot a couple of trajectories to get a general idea of what the solutions look like. You can even click on the axes, provided that you know where they are.

Example 4:

$$
\mathrm{x}^{\prime}=A \mathrm{x} \text { where } A=\left[\begin{array}{cc}
5 & -2 \\
-1 & 4
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=3 \rightsquigarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \lambda=6 \rightsquigarrow\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
\mathbf{x}(t)=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{6 t}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Here the solutions move away from both axes.

(Opposite scenario if both eigenvalues are negative)

Example 5:

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{cc}
1 & 5 \\
-2 & 3
\end{array}\right]
$$

As before, we saw that the solutions are spiraling away

Example 6:

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{ll}
4 & -4 \\
6 & -6
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=0 \rightsquigarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } \lambda=-2 \rightsquigarrow\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
\mathbf{x}(t)=C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{-2 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{gathered}
$$

The solutions are lines parallel to $\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Notice the change in arrows, which is when C_{2} changes from negative to positive. In the region parallel to $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ the solutions are just points (where $C_{2}=0$)

