LECTURE: REPEATED EIGENVALUES

Today: The next case to consider is repeated eigenvalues

1. REPEATED EIGENVALUES

Example 1:

Solve x' = Ax and draw the phase portrait, where

=l

STEP 1: Eigenvalues

1—A 1
A=

=(1-=)B -2 -1
=3—-A—3A+ X +1
=\ — 4\ +4
—(\—2)?
Which gives A = 2 (repeated eigenvalue)

STEP 2: A\ =2

—-210

1—2 1 10 —1 11]0
wann- (57,10 [

—x 4y = 0=y = x and therefore v = [g] = [x] =£U[1

1
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e )

OH NO!!! There is just one eigenvector, what do we do now?
First Guess: x(t) = Ce* E] but there should be a C5 there

Second Guess: x(t) = Ce* E] + Cyte? E] but this is WRONG

STEP 3:

Trick: Instead of solving (A — 2I)v = {0

O] solve

(A— 20w — [1

1] ~ Higenvector

_111—>__111:>—+—1:—1+ d
1111 _O 0lo T Yy = Yy = I and so

o[- [z =El =<+ [~ [F

STEP 4: Correct Solution (see below why)

Note: (1) is called a generalized eigenvector and is a great sub-

stitute when not enough eigenvectors are available.
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| # o] e

NOT rescale generalized eigenvectors, don’t turn [(1)] into [g]

DD | =

Warning: While it is ok to rescale eigenvectors, like [

STEP 5: Phase portrait:

[ /

\

~

|
\__{ ~
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How to draw the phase portrait:
: .1
e The main axis is 1
e Because of the e term, solutions on that axis move away from

the origin.

e The other solutions curve outwards and eventually they become

parallel to because the te? term is much bigger than the

1
1
other €% terms

Note: The [(1)] vector plays no role in the phase portrait.

Note: One way to check whether the picture is correct is to pick any

é (any other non-eigenvector is fine too)
and then by the ODE, we have

x'(0) = Ax(0) = [_11 :1))] H = [_11] = x'(0) = [_11]

Therefore at the point [1]

initial condition, say x(0) =

0
This is illustrated in the picture with the black arrow that moves in
the southeast direction.

the solutions move in the _11] direction.

2. WHY THIS WORKS

Let’s see why we need to solve (A — 21)w = E]
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o 1
Since it is not enough to assume that x(t) = te* [ ] let’s suppose

1
x(t) = te* E] + *'w w TBA

To find an equation for w, plug into the ODE

x' =Ax

sponding to A = 2

We therefore get:
1] 2w —aw

E] + 2w =Aw
Aw — 2w = 1
(A-2Dw=| | v

Therefore w has to be a generalized eigenvector of A corresponding to
A=2
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Note: For a more direct way of finding x(¢) you can use the “matrix

exponential” e4! which is the matrix analog of the exponential function
e, This is beyond the scope of this lecture.

3. INITIAL CONDITIONS

Example 2: (more practice)

Solve x’ = Ax with x(0) = [2] where A = {_1 _1}

3 4 =5

STEP 1: Eigenvalues

\A—*”ZTJ_A —1|

4 —5-)
=(=1=X)(=5-A) - (-1D(¥)
=5+ A+5\+ A2 +4

=\ 461 +9
=(A+3)°
Which gives A = —3
STEP 2: A = —3
[-1=(=3) -1 0] _[2 -1]o 2 —1
Nul(A=(=3)1) = = 4 —5—(—3)0] - [4 —20] 7 lo 0

2v —y =0=y = 2x and so

eaae

0
0

|
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STEP 3: Generalized Eigenvector

2 —1|1] 2m [2 ~1]1
4 -2|2 2 —1]1

R 2 —1|1
0 010
Hence 2z —y=1=y =2z — 1 and so

el e R R KRR

WARNING: Do NOT rescale this to [(ﬂ "

STEP 4: Solution

x(t) = Cye™ H + G (te—3t H +e ™ [_01D

(The phase portrait would be like the previous example, but with the
arrows reversed )

STEP 5: Initial Condition
1 1 0 2]

o] +ex (o |+ [4]) = |8

1 0 2

Cl [2] + CZ [_1] — _3

Cr=2  (C) =2 Oy =2
20 — Oy =3 \Ch=201 —3=2(2)—3=1 " \Cy =1
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x(t) = 2e H +1 (te‘?’t H +e {_01]) = [32j 2tt]

K N
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4. PPLANE APP

App: pplane app

Just like direction fields, in practice you draw phase portraits with the
help of a computer.

31

x' = Ax where A = [1 3]

Recall that the solution was: x(t) = Cre™ [_11] + Chelt [1]


https://aeb019.hosted.uark.edu/pplane.html
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<11>

(x(0),y(®))

<1l,-1>

To plot it using the pplane app, you write this as

¥ =x+3xy
Yy =3xx+y

The arrows tell you where the solutions are going.


https://aeb019.hosted.uark.edu/pplane.htmlx
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And by clicking, you can plot a couple of trajectories to get a general
idea of what the solutions look like. You can even click on the axes,
provided that you know where they are.
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I x+y
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Example 4:

x' = Ax where A =

A=3~ 1 A=06~> _12

—2

X(Zf) = 0163t 1

6t
1 + 026

Here the solutions move away from both axes.

x‘:| 5’)(-2, 2 ! The direction field solver know
¥ x4y |

The Display:
Minimum x: Minimum y: Arrow length: ["1 Variable length
Maximum x: Maximum v: Number of arrows:
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(Opposite scenario if both eigenvalues are negative)
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1 5
-2 3

x' = Ax where A =

As before, we saw that the solutions are spiraling away

: The direction field solver

= w45
xn_ XZ* fy exponential functions, but
Bl entered explicitly (27X an
The Display:
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The solutions are lines parallel to E] Notice the change in arrows,
which is when C5 changes from negative to positive. In the region

parallel to [1

1] the solutions are just points (where Cy = 0)
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