APMA 0350 - MIDTERM 2

Name	
Brown ID	

1. (7 points) Use undetermined coefficients to find a particular solution to

$$
y^{\prime \prime}+9 y=3 \sin (3 t)
$$

$$
y_{p}=\square
$$

2. (6 points) Use variation of parameters to find a particular solution to

$$
y^{\prime \prime}+9 y=3 \sin (3 t)
$$

You do NOT need to simplify your final answer You do NOT need to check that your answers match You may use $\sin ^{2}(\theta)=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)$ and $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$

$$
y_{p}=\square \square
$$

3. (8 points) Use Laplace transforms to solve

$$
\left\{\begin{aligned}
y^{\prime \prime}+6 y^{\prime}+10 y & =10 f(t) \\
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned} \text { where } f(t)=\left\{\begin{array}{lll}
3 & \text { if } 0 \leq t<4 \\
1 & \text { if } 4 \leq t<8 \\
5 & \text { if } t \geq 8
\end{array}\right.\right.
$$

Note: You're allowed to use without proof that

$$
\frac{10}{s\left(s^{2}+6 s+10\right)}=\left(\frac{1}{s}\right)-\left(\frac{s+6}{s^{2}+6 s+10}\right)
$$

\square
$y=$
4. (4 points) Use the definition of the Laplace transform to find

$$
\mathcal{L}\left\{t^{4}\right\}
$$

You may assume that any terms at ∞ are 0 I recommend using tabular integration
\square

