Programming Assignment 2 Solutions

Problem 1: Use the dsolve command in Python to solve

$$
2 y^{\prime \prime}+4 y^{\prime}+y=0
$$

```
from sympy import *
from matplotlib import pyplot
t=symbols('t')
y=Function('y')
eq = (2*diff(y(t),t,2)) +(4*diff(y(t),t)) + y(t)
ysoln = dsolve(eq,y(t))
print(ysoln)
Eq(y(t),C1*exp(t*(-1 + sqrt(2)/2)) +C2* exp(-t*(sqrt (2)/2 + 1)))
```

Problem 2: Use the dsolve command in Python to solve and plot for $-20 \leq t \leq 1$

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=2 e^{3 t}+2 t+6 \cos (t) \\
y(0)=1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

```
from sympy import *
from matplotlib import pyplot
t=symbols('t')
y=Function('y')
eq = (diff(y(t),t,2)) +(4*y(t)) - (2*exp(3*t)) - (2*t) - (6*\operatorname{cos}(t))
ysoln = dsolve(eq,y(t), ics = {y(0):1, diff(y(t),t).subs(t,0):1})
print(ysoln)
yoft = ysoln.rhs
plot(yoft,(t, -20,1))
Eq(y(t), t/2 + 2*exp(3*t)/13 + sin(2*t)/52 + 2* cos(t) - 15*\operatorname{cos}(2*t)/13)
```


Problem 3: Use Python to find the Laplace transform of

$$
e^{2 t}+4 t^{3}
$$

```
[2]: from sympy import *
            s,t=symbols('s t',positive="True")
            f=exp(2*t)+4*t**3
            laplace_transform(f,t,s) [0]
```

$$
\text { [2]: } \frac{s^{4}+24 s-48}{s^{4}(s-2)}
$$

Problem 4: Use Python to find a function whose Laplace transform is

$$
\frac{2(s-1) e^{-3 s}}{s^{2}-2 s+2}
$$

[3]: from sympy import * s,t=symbols('s t',positive=True) $\mathrm{F}=(2 *(\mathrm{~s}-1) *(\exp (-3 * s))) /(s * * 2-(2 * s)+2)$ inverse_laplace_transform(F,s,t)
[3]: $2 e^{t-3} \cos (t-3) \theta(t-3)$

ALTERNATE SOLUTION: The code may instead return the following, which is also correct:

```
[5]: from sympy import *
    s,t = symbols('s t',positive=True)
    F=(2*(s-1)*(exp(-3*s)))/(s**2-(s*2)+2)
    inverse_laplace_transform(F,s,t)
```

[5]: $2(\sin (t-3) \delta(t-3)+\cos (t-3) \theta(t-3)) e^{t-3}$

Problem 5: Use the dsolve command in Python to solve and plot for $0 \leq t \leq 10$

$$
\left\{\begin{array}{l}
y^{\prime \prime}+9 y=u_{3}(t)-2(t-5) u_{5}(t) \\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.
$$

```
from sympy import *
from matplotlib import pyplot
t = symbols('t')
x1 = Function('x')
deq1 = diff(x1(t),t,2) + (9*x1(t)) - (Heaviside(t-3)) + (2*(t-5)*Heaviside(t-5))
xsoln = dsolve(deq1, ics={x1(0):0,diff(x1(t),t).subs(t,0):0})
print(xsoln)
xoft=xsoln.rhs
plot(xoft,(t,0,10))
```

Eq $(x(t),-2 * t *$ Heaviside $(t-5) / 9+2 * \sin (3 * t-15) *$ Heaviside $(t-5) / 27-\cos (3 * t-9)$ *Heaviside $(t-3) / 9+10 * H e a v i s i d e(t-5) / 9+$ Heaviside $(t-3) / 9)$

