APMA 0350 - PROGRAMMING ASSIGNMENT 3

Instructions: In the problems below, please take a screenshot of your code and your result/plot, and include it in your assignment.

Problem 1: (10 points, 5 points each) Use the pplane app to plot the phase portraits of the following systems.
(a) (Click on at least five solutions)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]
$$

(b) (Click on at least 12 solutions, three in each of the 4 regions)

$$
\mathrm{x}^{\prime}=A \mathrm{x} \quad A=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]
$$

Problem 2: (10 points, 5 points each) Use the dsolve command in Python to solve the following systems. On the next page, you can find some sample code. No phase portrait required
(a)

$$
\mathrm{x}^{\prime}=A \mathrm{x} \quad A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]
$$

(b)

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Sample Code: This code solves the ODE

$$
\mathbf{x}^{\prime}=A \mathbf{x} \quad A=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

from sympy import *

```
t = symbols('t')
x1 = Function('x1')
x2 = Function('x2')
deq1 = diff(x1(t),t) - 2*x1(t)-3*x2(t)
deq2 = diff(x2(t),t) - 3*x1(t)-2*x2(t)
dsolve([deq1,deq2],ics=({x1(0):1,x2(0):4}))
```

Note: If you don't want initial conditions, remove the "ics" part
Note: We switch the signs because the ODE is equivalent to

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)-2 x_{1}(t)-3 x_{2}(t)=0 \\
x_{2}^{\prime}(t)-3 x_{1}(t)-2 x_{2}(t)=0
\end{array}\right.
$$

