APMA 1941G - FINAL EXAM

Problem 1: $(5=1+4$ points $)$
(a)

$$
\text { Define: } f(\epsilon) \sim \sum_{n=0}^{\infty} a_{n} \epsilon^{n}
$$

(b) Use induction to show that asymptotic expansions are unique, in the sense that if

$$
f(\epsilon) \sim \sum_{n=0}^{\infty} a_{n} \epsilon^{n} \text { and } f(\epsilon) \sim \sum_{n=0}^{\infty} b_{n} \epsilon^{n}
$$

Then $a_{i}=b_{i}$ for all $i=0,1,2, \cdots$
Problem 2: (5 points) Laplace's method states that if φ is a smooth function that has a global max at 0 with $\varphi(0)=0, \varphi^{\prime}(0)=0$ and $\varphi^{\prime \prime}(0)<0$, and a is any smooth function (not necessarily with compact support), then, as $\epsilon \rightarrow 0$

$$
I[\epsilon]=\int_{a}^{b} a(x) e^{\frac{\varphi(x)}{\epsilon}} d x \sim \sqrt{\frac{2 \pi \epsilon}{\left|\varphi^{\prime \prime}(0)\right|}} a(0)(1+o(\epsilon))
$$

Use Laplace's method to find an asymptotic expansion of

$$
\int_{0}^{\pi} x^{2} e^{\frac{3+\sin ^{2}(x)}{\epsilon}} d x
$$

Problem 3: (5 points) Consider the following ODE, where $u^{\epsilon}=u^{\epsilon}(t)$

$$
u_{\epsilon}^{\prime \prime}+e^{2 \epsilon t} u_{\epsilon}=0
$$

Apply the following WKB-Ansatz:

$$
u^{\epsilon}(t)=u^{0}\left(\sigma^{\epsilon}(t), \epsilon t\right)+\epsilon u^{1}\left(\sigma^{\epsilon}(t), \epsilon t\right)+\cdots
$$

Where $u^{k}=u^{k}(s, \tau)$ and $\sigma^{\epsilon}=\sigma^{\epsilon}(t)$ is to be selected and use this to find an explicit formula for $u^{0}(t)=u^{0}\left(\sigma^{\epsilon}(t), \epsilon t\right)$

Requirements: (don't forget to check them)

$$
\sigma^{\epsilon}(0)=\frac{1}{\epsilon} \text { and } \sigma_{\epsilon}^{\prime}(t)=O(1) \text { and } \sigma_{\epsilon}^{\prime \prime}(t)=O(\epsilon)
$$

Problem 4: $(5=1+2+2$ points $)$ Suppose that u is a minimizer of

$$
I[v]=\int_{W} L(D v, v, x) d x
$$

where W is an open subset of \mathbb{R}^{n} and $L=L(p, z, x)$
(a) What PDE must u satisfy? (just state the PDE)
(b) In the case $n=1$, show how to derive the PDE in (a)
(c) Still in the case $n=1$, notice that in theory maximizers of $I[u]$ also satisfy the same PDE! Show if u is a minimizer then u satisfies the following additional condition called convexity of L : For all v, we have

$$
\int_{W} L_{p p}\left(u^{\prime}, u, x\right)\left(v^{\prime}\right)^{2}+2 L_{p z}\left(u^{\prime}, u, x\right) v^{\prime} v+L_{z z}\left(u^{\prime}, u, x\right) L_{z z} v^{2} d x \geq 0
$$

Hint: Use the second derivative test from calculus!

Problem 5: (5 points) Consider the following ODE on $(0, \pi)$ where $u^{\epsilon}=u^{\epsilon}(x)$ and $\alpha, \beta \in \mathbb{R}$

$$
\left\{\begin{array}{r}
\epsilon u_{x x}^{\epsilon}+u_{x}^{\epsilon}=\cos (x) \\
u^{\epsilon}(0)=\alpha \text { and } u^{\epsilon}(\pi)=\beta
\end{array}\right.
$$

We expect there to be a boundary layer at $x=0$
Find a good approximation u^{\star} of u^{ϵ} that incorporates the fact that u^{ϵ} has a boundary layer. You only need to limit yourself to the $O(1)$ terms. For the matching-part, please show both methods.

Problem 6: (10 points, 2 points each) Suppose $u^{\epsilon}=u^{\epsilon}(x, t)$ is a solution of the following reaction-diffusion PDE, where $g=g(x)$ is a fixed function

$$
\left\{\begin{aligned}
\epsilon^{2}\left(u_{t}^{\epsilon}-\Delta u^{\epsilon}\right)+\Phi^{\prime}\left(u^{\epsilon}\right) & =0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u^{\epsilon}(x, 0) & =g
\end{aligned}\right.
$$

Here $\Phi=\Phi(s)$ is a double-well potential function, that is a function with a local min at $s= \pm 1$ with $\Phi(\pm 1)=0$, and a local max at $s=0$ with $\Phi(0)=1$, as in the following picture:

It turns out that for every t, there are two regions $W^{ \pm}(t)$ where $u^{\epsilon}(x, t) \rightarrow \pm 1$ on $W^{ \pm}(t)$, separated by a boundary layer $\Gamma(t)$, as in the following picture:

(a) Outer Solution, near $W^{ \pm}(t)$

Apply the Ansatz:

$$
u^{\epsilon}(x, t)=u^{0}(x, t)+\epsilon u^{1}(x, t)+\cdots
$$

Find the $O(1)$ terms and conclude that $u^{0}(x, t) \in\{-1,0,1\}$

Since 0 is not a minimizer, we can ignore it, and hence we get

$$
u^{0}(x, t) \in\{ \pm 1\}
$$

(b) [Inner Solution, near $\Gamma(t)$]

From now on, for convenience, assume $n=2$. Suppose that the boundary layer is locally the graph of a function $x_{2}=s^{\epsilon}\left(x_{1}, t\right)$

Assume that $s^{\epsilon}(0,0)=0$ and $s_{x_{1}}^{\epsilon}(0,0)=0$

Define $y=\left(y_{1}, y_{2}\right)$ by

$$
\left\{\begin{array}{l}
y_{1}=x_{1} \\
y_{2}=\frac{x_{2}-s^{\epsilon}\left(x_{1}, t\right)}{\epsilon}
\end{array}\right.
$$

Define $\bar{u}_{\epsilon}=\bar{u}_{\epsilon}\left(y_{1}, y_{2}\right)$ by

$$
u^{\epsilon}\left(x_{1}, x_{2}, t\right)=\bar{u}^{\epsilon}\left(y_{1}, y_{2}, t\right)=\bar{u}^{\epsilon}\left(x_{1}, \frac{x_{2}-s^{\epsilon}\left(x_{1}, t\right)}{\epsilon}, t\right)
$$

Find a PDE that \bar{u}_{ϵ} satisfies (no need to simplify it)
(c) Apply the Ansätze

$$
\begin{aligned}
\bar{u}_{\epsilon}(y, t) & =\bar{u}_{0}(y, t)+\epsilon \bar{u}_{1}(y, t)+\cdots \\
s^{\epsilon}\left(x_{1}, t\right) & =s^{0}\left(x_{1}, t\right)+\epsilon s^{1}\left(x_{1}, t\right)+\cdots
\end{aligned}
$$

Find the $O(1)$ terms, and show $f\left(y_{2}\right)=: \bar{u}_{0}\left(0, y_{2}, 0\right)$ solves

$$
-f^{\prime \prime}+\Phi^{\prime}(f)=0
$$

(d) Find the $O(\epsilon)$ terms and show $h\left(y_{2}\right)=: \bar{u}_{1}\left(0, y_{2}, 0\right)$ solves

$$
-h^{\prime \prime}+\Phi^{\prime \prime}(f) h-\left(f^{\prime}\right)\left(s_{t}^{0}(0,0)-s_{x_{1} x_{1}}^{0}(0,0)\right)=0
$$

(e) Multiply the equation in (d) by f^{\prime} and integrate with respect to y_{2} on \mathbb{R} (ignore the boundary terms) to get that, at $(0,0)$

$$
s_{t}^{0}(0,0)=s_{x_{1} x_{1}}^{0}(0,0)
$$

Problem 7:(5 points)

Suppose $u=u(x)$ and $v=v(x)$ solve following system of PDE in \mathbb{R}^{n} :

$$
\left\{\begin{aligned}
\Delta u & =v \\
-\Delta v & =u
\end{aligned}\right.
$$

Assume there exists a constant $C>0$ such that for all $x \in \mathbb{R}^{n}$ we have

$$
|u(x)| \leq \frac{C}{|x|^{n}} \text { and }|v(x)| \leq \frac{C}{|x|^{n}} \text { and }|D u(x)| \leq C \text { and }|D v(x)| \leq C
$$

Show that $u=v=0$ in \mathbb{R}^{n}

Hint: Fix $r>0$, multiply the first equation by v and the second equation by u, add them up, integrate over $B(0, r)$, and let $r \rightarrow \infty$

You may use that the area of the sphere $\partial B(0, r)$ is $n \alpha(n) r^{n-1}$ where $\alpha(n)$ is the volume of the unit ball $B(0,1)$ in \mathbb{R}^{n} You don't need to figure out $\alpha(n)$ to solve this problem

Note: To show that the boundary terms go to 0 , you may need to use the triangle inequality $\left|\int f\right| \leq \int|f|$ and the Cauchy-Schwarz inequality $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}|$

