APMA 1941G – FINAL EXAM

Problem 1: (5 = 1 + 4 points)

(a)

Define:
$$f(\epsilon) \sim \sum_{n=0}^{\infty} a_n \epsilon^n$$

(b) Use induction to show that asymptotic expansions are unique, in the sense that if

$$f(\epsilon) \sim \sum_{n=0}^{\infty} a_n \epsilon^n$$
 and $f(\epsilon) \sim \sum_{n=0}^{\infty} b_n \epsilon^n$

Then $a_i = b_i$ for all $i = 0, 1, 2, \cdots$

Problem 2: (5 points) Laplace's method states that if φ is a smooth function that has a global max at 0 with $\varphi(0) = 0$, $\varphi'(0) = 0$ and $\varphi''(0) < 0$, and a is any smooth function (not necessarily with compact support), then, as $\epsilon \to 0$

$$I[\epsilon] = \int_{a}^{b} a(x) e^{\frac{\varphi(x)}{\epsilon}} dx \sim \sqrt{\frac{2\pi\epsilon}{|\varphi''(0)|}} a(0) \left(1 + o(\epsilon)\right)$$

Use Laplace's method to find an asymptotic expansion of

$$\int_0^\pi x^2 \, e^{\frac{3+\sin^2(x)}{\epsilon}} \, dx$$

Problem 3: (5 points) Consider the following ODE, where $u^{\epsilon} = u^{\epsilon}(t)$

$$u_{\epsilon}'' + e^{2\epsilon t} u_{\epsilon} = 0$$

Apply the following WKB-Ansatz:

$$u^{\epsilon}(t) = u^{0}(\sigma^{\epsilon}(t), \epsilon t) + \epsilon u^{1}(\sigma^{\epsilon}(t), \epsilon t) + \cdots$$

Where $u^k = u^k(s, \tau)$ and $\sigma^{\epsilon} = \sigma^{\epsilon}(t)$ is to be selected and use this to find an *explicit* formula for $u^0(t) = u^0(\sigma^{\epsilon}(t), \epsilon t)$

Requirements: (don't forget to check them)

$$\sigma^{\epsilon}(0) = \frac{1}{\epsilon} \text{ and } \sigma'_{\epsilon}(t) = O(1) \text{ and } \sigma''_{\epsilon}(t) = O(\epsilon)$$

Problem 4: (5 = 1 + 2 + 2 points) Suppose that u is a minimizer of

$$I[v] = \int_{W} L(Dv, v, x) dx$$

where W is an open subset of \mathbb{R}^n and L = L(p, z, x)

- (a) What PDE must u satisfy? (just state the PDE)
- (b) In the case n = 1, show how to derive the PDE in (a)
- (c) Still in the case n = 1, notice that in theory maximizers of I[u] also satisfy the same PDE! Show if u is a minimizer then u satisfies the following additional condition called **convexity** of L: For all v, we have

$$\int_{W} L_{pp}(u', u, x)(v')^2 + 2L_{pz}(u', u, x)v'v + L_{zz}(u', u, x)L_{zz}v^2dx \ge 0$$

Hint: Use the second derivative test from calculus!

^

Problem 5: (5 points) Consider the following ODE on $(0, \pi)$ where $u^{\epsilon} = u^{\epsilon}(x)$ and $\alpha, \beta \in \mathbb{R}$

$$\begin{cases} \epsilon u_{xx}^{\epsilon} + u_{x}^{\epsilon} = \cos(x) \\ u^{\epsilon}(0) = \alpha \text{ and } u^{\epsilon}(\pi) = \beta \end{cases}$$

We expect there to be a boundary layer at x = 0

Find a good approximation u^* of u^{ϵ} that incorporates the fact that u^{ϵ} has a boundary layer. You only need to limit yourself to the O(1) terms. For the matching-part, please show both methods.

Problem 6: (10 points, 2 points each) Suppose $u^{\epsilon} = u^{\epsilon}(x,t)$ is a solution of the following reaction-diffusion PDE, where g = g(x) is a fixed function

$$\begin{cases} \epsilon^2 (u_t^{\epsilon} - \Delta u^{\epsilon}) + \Phi'(u^{\epsilon}) = 0 & \text{ in } \mathbb{R}^n \times (0, \infty) \\ u^{\epsilon}(x, 0) = g \end{cases}$$

Here $\Phi = \Phi(s)$ is a double-well potential function, that is a function with a local min at $s = \pm 1$ with $\Phi(\pm 1) = 0$, and a local max at s = 0with $\Phi(0) = 1$, as in the following picture:

It turns out that for every t, there are two regions $W^{\pm}(t)$ where $u^{\epsilon}(x,t) \rightarrow \pm 1$ on $W^{\pm}(t)$, separated by a boundary layer $\Gamma(t)$, as in the following picture:

(a) Outer Solution, near $W^{\pm}(t)$

Apply the Ansatz:

$$u^{\epsilon}(x,t) = u^{0}(x,t) + \epsilon u^{1}(x,t) + \cdots$$

Find the O(1) terms and conclude that $u^0(x,t) \in \{-1,0,1\}$

Since 0 is not a minimizer, we can ignore it, and hence we get

$$u^0(x,t) \in \{\pm 1\}$$

(b) [Inner Solution, near $\Gamma(t)$]

From now on, for convenience, assume n = 2. Suppose that the boundary layer is locally the graph of a function $x_2 = s^{\epsilon}(x_1, t)$

Assume that $s^{\epsilon}(0,0) = 0$ and $s^{\epsilon}_{x_1}(0,0) = 0$

Define $y = (y_1, y_2)$ by

$$\begin{cases} y_1 = x_1 \\ y_2 = \frac{x_2 - s^{\epsilon}(x_1, t)}{\epsilon} \end{cases}$$

Define $\overline{u}_{\epsilon} = \overline{u}_{\epsilon}(y_1, y_2)$ by

$$u^{\epsilon}(x_1, x_2, t) = \overline{u}^{\epsilon}(y_1, y_2, t) = \overline{u}^{\epsilon}\left(x_1, \frac{x_2 - s^{\epsilon}(x_1, t)}{\epsilon}, t\right)$$

Find a PDE that \bar{u}_{ϵ} satisfies (no need to simplify it)

(c) Apply the Ansätze

$$\overline{u}_{\epsilon}(y,t) = \overline{u}_0(y,t) + \epsilon \overline{u}_1(y,t) + \cdots$$
$$s^{\epsilon}(x_1,t) = s^0(x_1,t) + \epsilon s^1(x_1,t) + \cdots$$

Find the O(1) terms, and show $f(y_2) =: \overline{u}_0(0, y_2, 0)$ solves

$$-f'' + \Phi'(f) = 0$$

(d) Find the $O(\epsilon)$ terms and show $h(y_2) =: \overline{u}_1(0, y_2, 0)$ solves

$$-h'' + \Phi''(f)h - (f')\left(s_t^0(0,0) - s_{x_1x_1}^0(0,0)\right) = 0$$

(e) Multiply the equation in (d) by f' and integrate with respect to y_2 on \mathbb{R} (ignore the boundary terms) to get that, at (0,0)

$$s_t^0(0,0) = s_{x_1x_1}^0(0,0)$$

Problem 7:(5 points)

Suppose u = u(x) and v = v(x) solve following system of PDE in \mathbb{R}^n :

$$\begin{cases} \Delta u = v \\ -\Delta v = u \end{cases}$$

Assume there exists a constant C > 0 such that for all $x \in \mathbb{R}^n$ we have

$$|u(x)| \le \frac{C}{|x|^n}$$
 and $|v(x)| \le \frac{C}{|x|^n}$ and $|Du(x)| \le C$ and $|Dv(x)| \le C$

Show that u = v = 0 in \mathbb{R}^n

Hint: Fix r > 0, multiply the first equation by v and the second equation by u, add them up, integrate over B(0, r), and let $r \to \infty$

You may use that the area of the sphere $\partial B(0,r)$ is $n\alpha(n)r^{n-1}$ where $\alpha(n)$ is the volume of the unit ball B(0,1) in \mathbb{R}^n You don't need to figure out $\alpha(n)$ to solve this problem

Note: To show that the boundary terms go to 0, you may need to use the triangle inequality $|\int f| \leq \int |f|$ and the Cauchy-Schwarz inequality $|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| |\mathbf{b}|$