Problem 1

This problem refers to Example 4, the Earth-Moon Spacecraft Problem. Show that the limiting velocity V_{∞} satsifies

$$(V_{\infty})^2 = \frac{\tan(\alpha)}{b}.$$

Use the formula relating V_{∞} and V_0 , as well as the definition of e, the formula for e in terms of α , and finally the definition of b.

Proof. We defined $e = |r_0||V_0|^2 - 1$. We also have $e = \frac{1}{\cos(\alpha)}$ and $b = \left(\frac{\cos \alpha + 1}{\sin \alpha}\right)|r_0|$. In lecture, we found that

$$(V_{\infty})^2 = |V_0|^2 - \frac{2}{|r_0|}$$

First, we can rewrite

$$|V_0|^2 = \frac{e+1}{|r_0|} = \frac{\frac{1}{\cos\alpha} + 1}{|r_0|} = \frac{1 + \cos\alpha}{|r_0|\cos\alpha}$$

Then

$$(V_{\infty})^{2} = |V_{0}|^{2} - \frac{2}{|r_{0}|}$$
$$= \frac{1 + \cos \alpha}{|r_{0}| \cos \alpha} - \frac{2 \cos \alpha}{|r_{0}| \cos \alpha}$$
$$= \frac{1 - \cos \alpha}{|r_{0}| \cos \alpha}.$$

We can also re-arrange to find that

$$|r_0| = \frac{b}{\left(\frac{\cos\alpha + 1}{\sin\alpha}\right)},$$

 \mathbf{SO}

$$(V_{\infty})^{2} = \frac{1 - \cos \alpha}{\cos \alpha} \cdot \frac{\left(\frac{\cos \alpha + 1}{\sin \alpha}\right)}{b}$$
$$= \frac{\left(\frac{1 - \cos^{2} \alpha}{\sin \alpha}\right)}{\cos \alpha b}$$
$$= \frac{\left(\frac{\sin^{2} \alpha}{\sin \alpha}\right)}{\cos \alpha b}$$
$$= \frac{\sin \alpha}{\cos \alpha b}$$
$$= \frac{\tan \alpha}{b}$$

as claimed.

Problem 2: Reynold's Equation for Sliders

Consider a slider that you put in oil, where x is the position between 0 and 1 and the corresponding height is h(x). This slider exerts a certain pressure p^{ϵ} which satisfies the ODE

$$-\epsilon((h^3)p^{\epsilon}p_x^{\epsilon})_x = (p^{\epsilon}h)_x$$

$$p^{\epsilon}(0) = p^{\epsilon}(1) = 1$$
(1)

Here $p^{\epsilon} = p^{\epsilon}(x)$ and $x \in (0,1)$, and $h = h(x) : [0,1] \to (0,\infty)$ is a given height, with h(1) = 1 and ϵ is a "viscosity coefficient." We expect there to be a boundary layer near x = 1, and our goal is to find a good approximation p^{*} of p^{ϵ} .

(a) Outer solution, near x = 0

Apply the ansatz $p^{\epsilon}(x) = p^{0}(x) + \epsilon p^{1}(x) + \dots$ Compare the O(1) terms and get an equation for $p^{0}(x)$. Impose $p^{0}(0) = 1$, solve for p^{0} in terms of h(0) and h(x). Solution. Substituting the ansatz into (1), we obtain

$$-\epsilon(h^3(p^0 + \epsilon p^1 + \dots)(p_x^0 + \epsilon p_x^1 + \dots))_x = ((p^0 + \epsilon p^1 + \dots)h)_x = 0.$$

We can see that the only O(1) term will be $(p^0h)_x$ on the right-hand side, which gives

$$(p^0h)_x = 0.$$

Integrating this in x one time, we have

$$p^0(x)h(x) = C.$$

Then

$$p^0(x) = \frac{C}{h(x)}.$$

Imposing the boundary condition $p^0(0) = 1$, we have that

$$1 = \frac{C}{h(0)} \implies C = h(0).$$

Thus, we can express

$$p^0(x) = \frac{h(0)}{h(x)}$$

(b) Inner solution, near x = 1

Let $y = \frac{x-1}{\epsilon}$ and $\overline{p}_{\epsilon}(y) = p_{\epsilon}(x)$ and $\overline{h}(y) = h(x)$. Rewrite (1) in terms of \overline{p}_{ϵ} and \overline{h} , and apply the ansatz $\overline{p}_{\epsilon}(y) = \overline{p}_{0}(y) + \epsilon \overline{p}_{1}(y) + \dots$, and moreover Taylor expand the function $\overline{h}(y) = h(1 + \epsilon y)$. Compare the O(1)-terms and recall h(1) = 1 to obtain

$$\overline{p}_0(\overline{p_0})_y + \overline{p}_0 = -A.$$

Solve for y in terms of \overline{p}_0 using separation of variables. Note. At some point, it may be useful to note that

$$\frac{\overline{p}_0}{A + \overline{p}_0} = 1 - \frac{A}{A + \overline{p}_0}$$

Impose the condition $\overline{p}_0(0) = 1$, which is the same as $p^0(1) = 1$, and ultimately obtain that

$$-y = \overline{p}_0 - A \ln \left| \frac{A + \overline{p}_0}{A + 1} \right| - 1$$

where A is to be determined.

Proof. Rewriting,

$$-\epsilon((h^3)\overline{p}^{\epsilon}\overline{p}_x^{\epsilon})_x = (\overline{p}^{\epsilon}h)_x$$

Now Taylor expanding \overline{h} , we have that $\overline{h}(y) \approx h(1) + \epsilon y h'(1)$. Since h(1) = 1, $\overline{h}(y) \approx 1 + \epsilon y h'(1)$. Considering our ansatz and using the chain rule,

$$\overline{p}_x^{\epsilon} = \frac{1}{\epsilon} \left(\overline{p}_y^0 + \epsilon \overline{p}_y^1 + \ldots \right)$$

so we have, after moving the $1/\epsilon$ outside the derivative, transforming the x-derivatives into yderivatives, and multiplying through by ϵ ,

$$-\left((h^3)(\overline{p}^0+\epsilon\overline{p}^1)(\overline{p}^0_y+\epsilon\overline{p}^1_y)\right)_y=(h(\overline{p}^0+\epsilon\overline{p}^1+\ldots))_y$$

Using the Taylor expansion for h, we see that O(1) terms are:

$$-(\overline{p}^0\overline{p}^0_y)_y = \overline{p}^0_y$$

Re-arranging and integrating in y, we find that there is a constant A such that

$$\overline{p}^0 \overline{p}_y^0 + \overline{p}^0 = -A.$$

Rewriting this,

$$\frac{d\overline{p}_0}{dy} = \frac{-A - \overline{p}_0}{\overline{p}_0}$$

Using separation of variables, we have that

$$-y = \int \frac{\overline{p}_0}{A + \overline{p}_0} d\overline{p}_0$$
$$= \int 1 - \frac{A}{A + \overline{p}_0} d\overline{p}_0$$
$$= \overline{p}_0 - A \int \frac{1}{A + \overline{p}_0} d\overline{p}_0$$
$$= \overline{p}_0 - A \ln |A + \overline{p}_0| + C$$

Since $p_0(1) = 1$, $\overline{p}_0(0) = 1$, so $0 = 1 - A \ln |A + 1| + C$. Thus

$$-y = \overline{p}_0 - A \ln \left| \frac{A + \overline{p}_0}{A + 1} \right| - 1, \tag{2}$$

so we have the desired implicit formula for $\overline{p}_0(y)$ in terms of A.

(c) Matching

Here, the matching condition is

$$\lim_{x \to 1} p^0(x) = \lim_{y \to -\infty} \overline{p}^0(y).$$

Since we want a finite answer in (2), the only way this works is if the term inside of the logarithm goes to 0^+ , and this is achieved only if \overline{p}_0 goes to -A. Use this to solve for A and rewrite (2) in terms of the answer A. Finally, calculate your composite solution $p^*(x)$; leave the \overline{p}_0 term as $\overline{p}_0\left(\frac{x-1}{\epsilon}\right)$.

Solution. Since

$$\lim_{x \to 1} p^0(x) = \frac{h(0)}{h(1)} = h(0),$$

-A = h(0). Thus (2) becomes

$$-y = \overline{p}_0 + h(0) \ln \left| \frac{-h(0) + \overline{p}_0}{-h(0) + 1} \right| - 1.$$

The composite solution is given by

$$p^*(x) = p_0(x) + \overline{p}_0(y) - \text{ common part }.$$

Based on how we have been defining the common part in class, and the above, the common part is A = -h(0). Thus, leaving the \overline{p}_0 term as $\overline{p}_0\left(\frac{x-1}{\epsilon}\right)$, we obtain

$$p^*(x) = \frac{h(0)}{h(x)} + \overline{p}_0\left(\frac{x-1}{\epsilon}\right) + h(0).$$