APMA 1941G Homework 10 Solutions
 Lulabel Ruiz Seitz
 April 12, 2024

Problem 1

This problem refers to Example 4, the Earth-Moon Spacecraft Problem. Show that the limiting velocity V_{∞} satsifies

$$
\left(V_{\infty}\right)^{2}=\frac{\tan (\alpha)}{b}
$$

Use the formula relating V_{∞} and V_{0}, as well as the definition of e, the formula for e in terms of α, and finally the definition of b.

Proof. We defined $e=\left|r_{0}\right|\left|V_{0}\right|^{2}-1$. We also have $e=\frac{1}{\cos (\alpha)}$ and $b=\left(\frac{\cos \alpha+1}{\sin \alpha}\right)\left|r_{0}\right|$. In lecture, we found that

$$
\left(V_{\infty}\right)^{2}=\left|V_{0}\right|^{2}-\frac{2}{\left|r_{0}\right|}
$$

First, we can rewrite

$$
\left|V_{0}\right|^{2}=\frac{e+1}{\left|r_{0}\right|}=\frac{\frac{1}{\cos \alpha}+1}{\left|r_{0}\right|}=\frac{1+\cos \alpha}{\left|r_{0}\right| \cos \alpha} .
$$

Then

$$
\begin{aligned}
\left(V_{\infty}\right)^{2} & =\left|V_{0}\right|^{2}-\frac{2}{\left|r_{0}\right|} \\
& =\frac{1+\cos \alpha}{\left|r_{0}\right| \cos \alpha}-\frac{2 \cos \alpha}{\left|r_{0}\right| \cos \alpha} \\
& =\frac{1-\cos \alpha}{\left|r_{0}\right| \cos \alpha} .
\end{aligned}
$$

We can also re-arrange to find that

$$
\left|r_{0}\right|=\frac{b}{\left(\frac{\cos \alpha+1}{\sin \alpha}\right)},
$$

so

$$
\begin{aligned}
\left(V_{\infty}\right)^{2} & =\frac{1-\cos \alpha}{\cos \alpha} \cdot \frac{\left(\frac{\cos \alpha+1}{\sin \alpha}\right)}{b} \\
& =\frac{\left(\frac{1-\cos ^{2} \alpha}{\sin \alpha}\right)}{\cos \alpha b} \\
& =\frac{\left(\frac{\sin ^{2} \alpha}{\sin \alpha}\right)}{\cos \alpha b} \\
& =\frac{\sin \alpha}{\cos \alpha b} \\
& =\frac{\tan \alpha}{b}
\end{aligned}
$$

as claimed.

Problem 2: Reynold's Equation for Sliders

Consider a slider that you put in oil, where x is the position between 0 and 1 and the corresponding height is $h(x)$. This slider exerts a certain pressure p^{ϵ} which satisfies the ODE

$$
\begin{array}{r}
-\epsilon\left(\left(h^{3}\right) p^{\epsilon} p_{x}^{\epsilon}\right)_{x}=\left(p^{\epsilon} h\right)_{x} \\
p^{\epsilon}(0)=p^{\epsilon}(1)=1 \tag{1}
\end{array}
$$

Here $p^{\epsilon}=p^{\epsilon}(x)$ and $x \in(0,1)$, and $h=h(x):[0,1] \rightarrow(0, \infty)$ is a given height, with $h(1)=1$ and ϵ is a "viscosity coefficient." We expect there to be a boundary layer near $x=1$, and our goal is to find a good approximation p^{*} of p^{ϵ}.

(a) Outer solution, near $x=0$

Apply the ansatz $p^{\epsilon}(x)=p^{0}(x)+\epsilon p^{1}(x)+\ldots$ Compare the $O(1)$ terms and get an equation for $p^{0}(x)$. Impose $p^{0}(0)=1$, solve for p^{0} in terms of $h(0)$ and $h(x)$.
Solution. Substituting the ansatz into (1), we obtain

$$
-\epsilon\left(h^{3}\left(p^{0}+\epsilon p^{1}+\ldots\right)\left(p_{x}^{0}+\epsilon p_{x}^{1}+\ldots\right)\right)_{x}=\left(\left(p^{0}+\epsilon p^{1}+\ldots\right) h\right)_{x}=0
$$

We can see that the only $O(1)$ term will be $\left(p^{0} h\right)_{x}$ on the right-hand side, which gives

$$
\left(p^{0} h\right)_{x}=0
$$

Integrating this in x one time, we have

$$
p^{0}(x) h(x)=C .
$$

Then

$$
p^{0}(x)=\frac{C}{h(x)}
$$

Imposing the boundary condition $p^{0}(0)=1$, we have that

$$
1=\frac{C}{h(0)} \Longrightarrow C=h(0)
$$

Thus, we can express

$$
p^{0}(x)=\frac{h(0)}{h(x)} \text {. }
$$

(b) Inner solution, near $x=1$

Let $y=\frac{x-1}{\epsilon}$ and $\bar{p}_{\epsilon}(y)=p_{\epsilon}(x)$ and $\bar{h}(y)=h(x)$. Rewrite 1 in terms of \bar{p}_{ϵ} and \bar{h}, and apply the ansatz $\bar{p}_{\epsilon}(y)=\bar{p}_{0}(y)+\epsilon \bar{p}_{1}(y)+\ldots$, and moreover Taylor expand the function $\bar{h}(y)=h(1+\epsilon y)$. Compare the $O(1)$-terms and recall $h(1)=1$ to obtain

$$
\bar{p}_{0}\left(\overline{p_{0}}\right)_{y}+\bar{p}_{0}=-A .
$$

Solve for y in terms of \bar{p}_{0} using separation of variables.
Note. At some point, it may be useful to note that

$$
\frac{\bar{p}_{0}}{A+\bar{p}_{0}}=1-\frac{A}{A+\bar{p}_{0}} .
$$

Impose the condition $\bar{p}_{0}(0)=1$, which is the same as $p^{0}(1)=1$, and ultimately obtain that

$$
-y=\bar{p}_{0}-A \ln \left|\frac{A+\bar{p}_{0}}{A+1}\right|-1
$$

where A is to be determined.
Proof. Rewriting,

$$
-\epsilon\left(\left(h^{3}\right) \bar{p}^{\epsilon} \bar{p}_{x}^{\epsilon}\right)_{x}=\left(\bar{p}^{\epsilon} h\right)_{x}
$$

Now Taylor expanding \bar{h}, we have that $\bar{h}(y) \approx h(1)+\epsilon y h^{\prime}(1)$. Since $h(1)=1, \bar{h}(y) \approx 1+\epsilon y h^{\prime}(1)$. Considering our ansatz and using the chain rule,

$$
\bar{p}_{x}^{\epsilon}=\frac{1}{\epsilon}\left(\bar{p}_{y}^{0}+\epsilon \bar{p}_{y}^{1}+\ldots\right)
$$

so we have, after moving the $1 / \epsilon$ outside the derivative, transforming the x-derivatives into y derivatives, and multiplying through by ϵ,

$$
-\left(\left(h^{3}\right)\left(\bar{p}^{0}+\epsilon \bar{p}^{1}\right)\left(\bar{p}_{y}^{0}+\epsilon \bar{p}_{y}^{1}\right)\right)_{y}=\left(h\left(\bar{p}^{0}+\epsilon \bar{p}^{1}+\ldots\right)\right)_{y}
$$

Using the Taylor expansion for h, we see that $O(1)$ terms are:

$$
-\left(\bar{p}^{0} \bar{p}_{y}^{0}\right)_{y}=\bar{p}_{y}^{0}
$$

Re-arranging and integrating in y, we find that there is a constant A such that

$$
\bar{p}^{0} \bar{p}_{y}^{0}+\bar{p}^{0}=-A
$$

Rewriting this,

$$
\frac{d \bar{p}_{0}}{d y}=\frac{-A-\bar{p}_{0}}{\bar{p}_{0}} .
$$

Using separation of variables, we have that

$$
\begin{aligned}
-y & =\int \frac{\bar{p}_{0}}{A+\bar{p}_{0}} d \bar{p}_{0} \\
& =\int 1-\frac{A}{A+\bar{p}_{0}} d \bar{p}_{0} \\
& =\bar{p}_{0}-A \int \frac{1}{A+\bar{p}_{0}} d \bar{p}_{0} \\
& =\bar{p}_{0}-A \ln \left|A+\bar{p}_{0}\right|+C
\end{aligned}
$$

Since $p_{0}(1)=1, \bar{p}_{0}(0)=1$, so $0=1-A \ln |A+1|+C$. Thus

$$
\begin{equation*}
-y=\bar{p}_{0}-A \ln \left|\frac{A+\bar{p}_{0}}{A+1}\right|-1, \tag{2}
\end{equation*}
$$

so we have the desired implicit formula for $\bar{p}_{0}(y)$ in terms of A.

(c) Matching

Here, the matching condition is

$$
\lim _{x \rightarrow 1} p^{0}(x)=\lim _{y \rightarrow-\infty} \bar{p}^{0}(y)
$$

Since we want a finite answer in (2), the only way this works is if the term inside of the logarithm goes to 0^{+}, and this is achieved only if \bar{p}_{0} goes to $-A$. Use this to solve for A and rewrite (2) in terms of the answer A. Finally, calculate your composite solution $p^{*}(x)$; leave the \bar{p}_{0} term as $\bar{p}_{0}\left(\frac{x-1}{\epsilon}\right)$.

Solution. Since

$$
\lim _{x \rightarrow 1} p^{0}(x)=\frac{h(0)}{h(1)}=h(0),
$$

$-A=h(0)$. Thus (2) becomes

$$
-y=\bar{p}_{0}+h(0) \ln \left|\frac{-h(0)+\bar{p}_{0}}{-h(0)+1}\right|-1 .
$$

The composite solution is given by

$$
p^{*}(x)=p_{0}(x)+\bar{p}_{0}(y)-\text { common part } .
$$

Based on how we have been defining the common part in class, and the above, the common part is $A=-h(0)$. Thus, leaving the \bar{p}_{0} term as $\bar{p}_{0}\left(\frac{x-1}{\epsilon}\right)$, we obtain

$$
p^{*}(x)=\frac{h(0)}{h(x)}+\bar{p}_{0}\left(\frac{x-1}{\epsilon}\right)+h(0)
$$

