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Problem 1

This problem refers to Example 4, the Earth-Moon Spacecraft Problem. Show that the limiting
velocity V∞ satsifies

(V∞)2 =
tan(α)

b
.

Use the formula relating V∞ and V0, as well as the definition of e, the formula for e in terms of α,
and finally the definition of b.

Proof. We defined e = |r0||V0|2 − 1. We also have e = 1
cos(α) and b =

(
cosα+1
sinα

)
|r0|. In lecture, we

found that

(V∞)2 = |V0|2 −
2

|r0|
.

First, we can rewrite

|V0|2 =
e+ 1

|r0|
=

1
cosα + 1

|r0|
=

1 + cosα

|r0| cosα
.

Then

(V∞)2 = |V0|2 −
2

|r0|

=
1 + cosα

|r0| cosα
− 2 cosα

|r0| cosα

=
1− cosα

|r0| cosα
.

We can also re-arrange to find that

|r0| =
b(

cosα+1
sinα

) ,
so

(V∞)2 =
1− cosα

cosα
·
(
cosα+1
sinα

)
b

=

(
1−cos2 α

sinα

)
cosαb

=

(
sin2 α
sinα

)
cosαb

=
sinα

cosαb

=
tanα

b

as claimed.

Problem 2: Reynold’s Equation for Sliders

Consider a slider that you put in oil, where x is the position between 0 and 1 and the corresponding
height is h(x). This slider exerts a certain pressure pϵ which satisfies the ODE

−ϵ((h3)pϵpϵx)x = (pϵh)x

pϵ(0) = pϵ(1) = 1
(1)

Here pϵ = pϵ(x) and x ∈ (0, 1), and h = h(x) : [0, 1] → (0,∞) is a given height, with h(1) = 1 and
ϵ is a “viscosity coefficient.” We expect there to be a boundary layer near x = 1, and our goal is to
find a good approximation p∗ of pϵ.
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(a) Outer solution, near x = 0

Apply the ansatz pϵ(x) = p0(x)+ ϵp1(x)+ ... Compare the O(1) terms and get an equation for p0(x).
Impose p0(0) = 1, solve for p0 in terms of h(0) and h(x).
Solution. Substituting the ansatz into (1), we obtain

−ϵ(h3(p0 + ϵp1 + ...)(p0x + ϵp1x + ...))x = ((p0 + ϵp1 + ...)h)x = 0.

We can see that the only O(1) term will be (p0h)x on the right-hand side, which gives

(p0h)x = 0.

Integrating this in x one time, we have

p0(x)h(x) = C.

Then

p0(x) =
C

h(x)
.

Imposing the boundary condition p0(0) = 1, we have that

1 =
C

h(0)
=⇒ C = h(0).

Thus, we can express

p0(x) =
h(0)

h(x)
.

(b) Inner solution, near x = 1

Let y = x−1
ϵ and pϵ(y) = pϵ(x) and h(y) = h(x). Rewrite (1) in terms of pϵ and h, and apply

the ansatz pϵ(y) = p0(y) + ϵp1(y) + ..., and moreover Taylor expand the function h(y) = h(1 + ϵy).
Compare the O(1)-terms and recall h(1) = 1 to obtain

p0(p0)y + p0 = −A.

Solve for y in terms of p0 using separation of variables.
Note. At some point, it may be useful to note that

p0
A+ p0

= 1− A

A+ p0
.

Impose the condition p0(0) = 1, which is the same as p0(1) = 1, and ultimately obtain that

−y = p0 −A ln

∣∣∣∣A+ p0
A+ 1

∣∣∣∣− 1

where A is to be determined.

Proof. Rewriting,
−ϵ((h3)pϵpϵx)x = (pϵh)x

Now Taylor expanding h, we have that h(y) ≈ h(1) + ϵyh′(1). Since h(1) = 1, h(y) ≈ 1 + ϵyh′(1).
Considering our ansatz and using the chain rule,

pϵx =
1

ϵ

(
p0y + ϵp1y + ...

)
so we have, after moving the 1/ϵ outside the derivative, transforming the x-derivatives into y-
derivatives, and multiplying through by ϵ,

−
(
(h3)(p0 + ϵp1)(p0y + ϵp1y)

)
y
= (h(p0 + ϵp1 + ...))y
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Using the Taylor expansion for h, we see that O(1) terms are:

−(p0p0y)y = p0y

Re-arranging and integrating in y, we find that there is a constant A such that

p0p0y + p0 = −A.

Rewriting this,
dp0
dy

=
−A− p0

p0
.

Using separation of variables, we have that

−y =

∫
p0

A+ p0
dp0

=

∫
1− A

A+ p0
dp0

= p0 −A

∫
1

A+ p0
dp0

= p0 −A ln |A+ p0|+ C

Since p0(1) = 1, p0(0) = 1, so 0 = 1−A ln |A+ 1|+ C. Thus

−y = p0 −A ln

∣∣∣∣A+ p0
A+ 1

∣∣∣∣− 1, (2)

so we have the desired implicit formula for p0(y) in terms of A.

(c) Matching

Here, the matching condition is
lim
x→1

p0(x) = lim
y→−∞

p0(y).

Since we want a finite answer in (2), the only way this works is if the term inside of the logarithm
goes to 0+, and this is achieved only if p0 goes to −A. Use this to solve for A and rewrite (2) in
terms of the answer A. Finally, calculate your composite solution p∗(x); leave the p0 term as p0

(
x−1
ϵ

)
.

Solution. Since

lim
x→1

p0(x) =
h(0)

h(1)
= h(0),

−A = h(0). Thus (2) becomes

−y = p0 + h(0) ln

∣∣∣∣−h(0) + p0
−h(0) + 1

∣∣∣∣− 1.

The composite solution is given by

p∗(x) = p0(x) + p0(y)− common part .

Based on how we have been defining the common part in class, and the above, the common part is
A = −h(0). Thus, leaving the p0 term as p0

(
x−1
ϵ

)
, we obtain

p∗(x) =
h(0)

h(x)
+ p0

(
x− 1

ϵ

)
+ h(0).
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