APMA 1941G - HOMEWORK 10

Problem 1: (5 points)

This problem refers to "Example 4: Earth-Moon Spacecraft Problem"

Show that the limiting velocity V_{∞} satisfies

$$\left(V_{\infty}\right)^2 = \frac{\tan(\alpha)}{b}$$

Hint: Use the formula that relates V_{∞} to V_0 , as well as the definition of e (at the beginning of the section on classical orbits), the formula for e in terms of α , and finally the definition of b.

(TURN PAGE)

Problem 2: [Reynold's equation for sliders] (15 points, 5 points each)Consider a slider that you put in oil, as in the following picture:

This slider exerts a certain pressure p^ϵ which satisfies the ODE

$$\begin{cases} -\epsilon \left(\left(h^3 \right) p^{\epsilon} p_x^{\epsilon} \right)_x = \left(p^{\epsilon} h \right)_x \\ p^{\epsilon}(0) = p^{\epsilon}(1) = 1 \end{cases}$$
(ODE)

Here $p^{\epsilon} = p^{\epsilon}(x)$ and $x \in (0, 1)$ and $h = h(x) : [0, 1] \to (0, \infty)$ is a given height, with h(1) = 1 and ϵ is a 'viscosity coefficient'

We expect there to be a boundary layer near x = 1, and our goal is to find a good approximation p^* of p^{ϵ} .

(a) [Outer solution, near x = 0]

Apply the Ansatz:

$$p^{\epsilon}(x) = p^0(x) + \epsilon p^1(x) + \cdots$$

Compare the O(1)-terms and get an equation for $p^0(x)$. Impose $p^0(0) = 1$, solve for p^0 in terms of h(0) and h(x)

(b) [Inner solution, near x = 1]

Let
$$y = \frac{x-1}{\epsilon}$$
 and $\bar{p}_{\epsilon}(y) = p_{\epsilon}(x)$ and $\bar{h}(y) = h(x)$

Rewrite (ODE) in terms of \bar{p}_{ϵ} and \bar{h} , and apply the Ansatz:

$$\bar{p}_{\epsilon}(y) = \bar{p}_0(y) + \epsilon \, \bar{p}_1(y) + \cdots,$$

and moreover Taylor expand the function $\bar{h}(y) = h(1+\epsilon y)$

Compare the O(1)-terms and recall h(1) = 1 to obtain

$$\bar{p}_0 \left(\bar{p}_0 \right)_y + \bar{p}_0 = -A$$

Solve for y in terms of \bar{p}_0 using separation of variables

Note: At some point, it may be useful to note that

$$\frac{\bar{p}_0}{A + \bar{p}_0} = 1 - \frac{A}{A + \bar{p}_0}$$

Impose the condition $\bar{p}_0(0) = 1$ (which is the same as $p^0(1) = 1$) and ultimately obtain that

$$-y = \bar{p}_0 - A \ln \left| \frac{A + \bar{p}_0}{A + 1} \right| - 1$$
 (I)

Here A is to be determined (note that there are many equivalent ways to write your answer)

This gives us an implicit formula for $\bar{p}_0(y)$ in terms of A.

(c) [Matching]

Here, the matching condition is

$$\lim_{x \to 1} p^0(x) = \lim_{y \to -\infty} \bar{p}_0(y)$$

Since we want a finite answer in (I), the only way this works if if the term in our ln goes to 0^+ , and this is achieved only if \bar{p}_0 goes to -A. In other words, the right-hand-side of our matching conditon has to be -A.

Use this to solve for A and rewrite (I) in terms of the answer A that you found (this should be quick); this gives us an implicit

formula for \bar{p}_0 .

Finally, calculate your composite solution $p^{\star}(x)$; leave the \bar{p}_0 term as $\bar{p}_0\left(\frac{x-1}{\epsilon}\right)$