APMA 1941G - HOMEWORK 10

Problem 1: (5 points)
This problem refers to "Example 4: Earth-Moon Spacecraft Problem" Show that the limiting velocity V_{∞} satisfies

$$
\left(V_{\infty}\right)^{2}=\frac{\tan (\alpha)}{b}
$$

Hint: Use the formula that relates V_{∞} to V_{0}, as well as the definition of e (at the beginning of the section on classical orbits), the formula for e in terms of α, and finally the definition of b.

(TURN PAGE)

Problem 2: [Reynold's equation for sliders] (15 points, 5 points each)
Consider a slider that you put in oil, as in the following picture:

SLIDER

This slider exerts a certain pressure p^{ϵ} which satisfies the ODE

$$
\left\{\begin{array}{r}
-\epsilon\left(\left(h^{3}\right) p^{\epsilon} p_{x}^{\epsilon}\right)_{x}=\left(p^{\epsilon} h\right)_{x} \tag{ODE}\\
p^{\epsilon}(0)=p^{\epsilon}(1)=1
\end{array}\right.
$$

Here $p^{\epsilon}=p^{\epsilon}(x)$ and $x \in(0,1)$ and $h=h(x):[0,1] \rightarrow(0, \infty)$ is a given height, with $h(1)=1$ and ϵ is a 'viscosity coefficient'

We expect there to be a boundary layer near $x=1$, and our goal is to find a good approximation p^{\star} of p^{ϵ}.
(a) [Outer solution, near $x=0$]

Apply the Ansatz:

$$
p^{\epsilon}(x)=p^{0}(x)+\epsilon p^{1}(x)+\cdots
$$

Compare the $O(1)$-terms and get an equation for $p^{0}(x)$. Impose $p^{0}(0)=1$, solve for p^{0} in terms of $h(0)$ and $h(x)$
(b) [Inner solution, near $x=1$]

Let $y=\frac{x-1}{\epsilon}$ and $\bar{p}_{\epsilon}(y)=p_{\epsilon}(x)$ and $\bar{h}(y)=h(x)$
Rewrite (ODE) in terms of \bar{p}_{ϵ} and \bar{h}, and apply the Ansatz:

$$
\bar{p}_{\epsilon}(y)=\bar{p}_{0}(y)+\epsilon \bar{p}_{1}(y)+\cdots,
$$

and moreover Taylor expand the function $\bar{h}(y)=h(1+\epsilon y)$

Compare the $O(1)$-terms and recall $h(1)=1$ to obtain

$$
\bar{p}_{0}\left(\bar{p}_{0}\right)_{y}+\bar{p}_{0}=-A
$$

Solve for y in terms of \bar{p}_{0} using separation of variables

Note: At some point, it may be useful to note that

$$
\frac{\bar{p}_{0}}{A+\bar{p}_{0}}=1-\frac{A}{A+\bar{p}_{0}}
$$

Impose the condition $\bar{p}_{0}(0)=1$ (which is the same as $\left.p^{0}(1)=1\right)$ and ultimately obtain that

$$
\begin{equation*}
-y=\bar{p}_{0}-A \ln \left|\frac{A+\bar{p}_{0}}{A+1}\right|-1 \tag{I}
\end{equation*}
$$

Here A is to be determined (note that there are many equivalent ways to write your answer)

This gives us an implicit formula for $\bar{p}_{0}(y)$ in terms of A.
(c) [Matching]

Here, the matching condition is

$$
\lim _{x \rightarrow 1} p^{0}(x)=\lim _{y \rightarrow-\infty} \bar{p}_{0}(y)
$$

Since we want a finite answer in (\mathbb{I}), the only way this works if if the term in our \ln goes to 0^{+}, and this is achieved only if \bar{p}_{0} goes to $-A$. In other words, the right-hand-side of our matching conditon has to be $-A$.

Use this to solve for A and rewrite ($\overline{\mathrm{I}})$ in terms of the answer A that you found (this should be quick); this gives us an implicit
formula for \bar{p}_{0}.

Finally, calculate your composite solution $p^{\star}(x)$; leave the \bar{p}_{0} term as $\bar{p}_{0}\left(\frac{x-1}{\epsilon}\right)$

