APMA 1941G - HOMEWORK 11

Problem 1: $(10=3+3+4$ points $)$ Consider the following PDE:

$$
\epsilon^{2} u_{t}^{\epsilon}-\epsilon^{2} u_{x x}^{\epsilon}+(f(x))^{2} \sin \left(2 u^{\epsilon}\right)=0
$$

Where $u^{\epsilon}=u^{\epsilon}(t, x)$ and $x \in \mathbb{R}$ and $f(x)>0$
Here think of $\sin \left(2 u^{\epsilon}\right)$ as being our $\Phi^{\prime}\left(u^{\epsilon}\right)$
Similar to the situation in "A Singular Variational Problem" (Ex 5) we expect that there are two regions $W^{ \pm}$separated by a curve $x=s^{\epsilon}(t)$ such that

$$
u^{\epsilon}(t, x) \rightarrow\left\{\begin{array}{l}
0 \text { if } x<s^{\epsilon}(t) \\
\pi \text { if } x>s^{\epsilon}(t)
\end{array}\right.
$$

as in the following picture:

Goal: Find a differential equation for $s^{0}(t)$
(a) Let $u^{\epsilon}(t, x)=\bar{u}^{\epsilon}\left(t, \frac{x-s^{\epsilon}(t)}{\epsilon}\right)$ where $\bar{u}^{\epsilon}=\bar{u}^{\epsilon}(t, y)$

Rewrite the above PDE in terms of \bar{u}^{ϵ}.
(b) Apply the following Ansätze to the PDE in (a)

$$
\left\{\begin{aligned}
\bar{u}^{\epsilon} & =\bar{u}^{0}+\epsilon \bar{u}^{1}+\cdots \\
s^{\epsilon} & =s^{0}+\epsilon s^{1}+\cdots
\end{aligned}\right.
$$

Here $\bar{u}^{k}=\bar{u}^{k}(t, y)$ and $s^{k}=s^{k}(t)$

What are the $O(1)$ and $O(\epsilon)$ terms?

Note: You may need to Taylor expand the $\sin \left(2 \bar{u}^{\epsilon}\right)$ and the $f(x)=f(s+\epsilon y)=f\left(s_{0}+\epsilon\left(s_{1}+y\right)\right)$ terms
(c) Show that s_{0} must satisfy the differential equation:

$$
s_{0}^{\prime}(t)=-\frac{f^{\prime}\left(s_{0}\right)}{f\left(s_{0}\right)}
$$

Here $s_{0}^{\prime}=\frac{d s^{0}}{d t}$ and $f^{\prime}=\frac{d f}{d s}$
Hint: Multiply the $O(\epsilon)$ term equation by \bar{u}_{y}^{0} and integrate with respect to y on \mathbb{R}. This gives you four terms.

For the term with $\bar{u}_{y y}^{1}$, integrate by parts and use the $O(1)-$ term. For the term with $\cos \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{0}$ (recognize this as a derivative), integrate by parts. You should see some cancellation happening now when you add the 4 terms. For the term with $\sin \left(2 \bar{u}^{0}\right)$, don't integrate by parts yet; first use your $O(1)$ term to get rid of the sin -term and then integrate by parts.

(TURN PAGE)

Problem 2: $(10=3+4+3$ points $)$ Consider Burgers' equation

$$
\begin{equation*}
u_{t}^{\epsilon}+u^{\epsilon} u_{x}^{\epsilon}+\epsilon u_{x x}^{\epsilon}=0 \tag{B}
\end{equation*}
$$

Where $u^{\epsilon}=u^{\epsilon}(t, x)$ with $x \in \mathbb{R}$
From PDE-theory, it turns out that u^{0} forms a 'shock' along a curve $x=s(t)$, that is u^{0} has a jump discontinuity, where u_{0} jumps from values u_{0}^{-}to u_{0}^{+}as in the following picture:

Goal: Find a differential equation for s
(a) [Outer Solution, far from $s(t)$]

Apply the Ansatz $u^{\epsilon}=u^{0}+\epsilon u^{1}+\cdots$ and show that u^{0} satisfies

$$
u_{t}^{0}+u^{0} u_{x}^{0}=0
$$

(b) [Inner Solution, on $s(t)$]

Assume that u^{0} is discontinuous along the curve $x=s(t)$
Let $y=\frac{x-s(t)}{\epsilon}$ and $u^{\epsilon}(t, x)=\bar{u}^{\epsilon}(t, y)$
Rewrite ((B) in terms of \bar{u}_{ϵ} and apply the Ansatz

$$
\bar{u}^{\epsilon}=\bar{u}^{0}+\epsilon \bar{u}^{1}+\cdots
$$

Compare the $O\left(\frac{1}{\epsilon}\right)$ terms, and find a PDE for \bar{u}^{0} (no need to Ansatz s here!)
(c) [Matching] Integrate the equation in (b) with respect to y from $-\infty$ to ∞. You may assume that $\lim _{y \rightarrow \pm \infty} \bar{u}_{y}^{0}(y)=0$
The matching assumption here becomes:

$$
\left\{\begin{array}{l}
\lim _{y \rightarrow \infty} \bar{u}^{0}(y)=\lim _{x \rightarrow(s(t))^{+}} u^{0}:=u_{0}^{+} \\
\lim _{y \rightarrow-\infty} \bar{u}^{0}(y)=\lim _{x \rightarrow(s(t))^{-}} u^{0}:=u_{0}^{-}
\end{array}\right.
$$

Use the matching assumption to find that s solves

$$
s^{\prime}(t)=\frac{u_{0}^{-}+u_{0}^{+}}{2}
$$

Notice an averaging-phenomenon happening here, similar to Example 3: "An internal layer"

