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Problem 1

Consider the following PDE:

ϵ2uϵ
t − ϵ2uϵ

xx + (f(x))2 sin(2uϵ) = 0. (1)

where uϵ = uϵ(t, x), x ∈ R, and f(x) > 0. Here think of sin(2uϵ) as being our Ψ′(uϵ). Similar to
the situation in “A Singular Variational Problem” (Ex 5), we expect that there are two regions W±

separated by a curve x = sϵ(t) such that

uϵ(t, x) →

{
0 if x < sϵ(t)

π if x > sϵ(t)
. (2)

Our goal is to find a differential equation for s0(t).

(a)

Let uϵ(t, x) = uϵ
(
t, x−sϵ(t)

ϵ

)
where uϵ = uϵ(t, y). Rewrite (1) in terms of uϵ.

Solution. Applying the chain rule, we obtain the equivalent equation for (1),

ϵ2uϵ
t − ϵuϵ

ys
ϵ
t − uϵ

yy + (f(ϵy + sϵ(t)))2 sin(2uϵ) = 0. (3)

(b)

Apply the following ansatz to the PDE in (a):{
uϵ = u0 + ϵu1 + ...

sϵ = s0 + ϵs1 + ...

Here uk = uk(t, y) and sk = sk(t). What are the O(1) and O(ϵ) terms? Note that you may need to
Taylor expand the sin(2uϵ) and the f(x) = f(s+ ϵy) = f(s0 + ϵ(s1 + y)) terms.

Solution. In order to substitute the above ansatz into (3), first note that via Taylor expansion,

sin(2uϵ) = sin(2(u0 + ϵu1 + ...)) = sin(2u0) + 2ϵu1 cos(2u0) + ...

and
f(sϵ + ϵy) = f(s0 + ϵ(s1 + y) + ...) = f(s0) + ϵ(s1 + y)f ′(s0) + ...

Then we obtain

ϵ2(u0
t − ϵu1

t + ...) + ϵ(u0
y + ϵu1

y + ...)(s0t + ϵs1t + ...)− (u0
yy + ϵu1

yy + ...)

+ (f(s0) + ϵ(s1 + y)f ′(s0) + ...)2(sin(2u0) + 2ϵu1 cos(2u0) + ...) = 0.

The O(1) terms then yield:
u0
yy − f(s0)2 sin(2u0) = 0. (4)

The O(ϵ) terms yield:

−u1
yy + 2f(s0)2u1 cos(2u0) + 2(s1 + y)f ′(s0)f(s0) sin(2u0)− u0

ys
0
t = 0 (5)
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(c)

Show that s0 must satisfy the differential equation:

s′0(t) = −f ′(s0)

f(s0)
(6)

here s′0 = ds0

dt and f ′ = df
ds .

Solution. First, we multiply the O(ϵ) equation (5) by u0
y and integrate with respect to y on R.

Doing this, the first term in (5) becomes, using integration by parts,

−
∫
R
u1
yyu

0
y = −u1

yu
0
y|∞−∞ +

∫
R
u1
yu

0
yy

=

∫
R
f(s0)2 sin(2u0)u1

ydy.

Here we saw the boundary terms were zero because uϵ tends to a constant both when y → ∞ and
y → −∞, due to the condition (2). Next we consider the contribution from the second term in (5)
after multiplying and integrating. Notice that cos(2u0)u0

y = d
dy

1
2 sin(2u

0). Then using integration by
parts yields that∫

R
2f(s0)2u1(cos 2u0)u0

ydy =

∫
R
f(s0)

2u1 d

dy
sin(2u0)dy

= f(s0)
2u1 sin(2u0)|∞−∞ −

∫
R
sin(2u0)f(s0)

2u1
ydy

= −
∫
R
f(s0)2 sin(2u0)u1

ydy.

We have now seen that the contributions from the first two terms reduce to zero. Next we consider

the third term. Since the O(1)-terms yield that sin(2u0) =
u0
yy

f(s0)2 , we substitute this in to see that,

again using integration by parts,∫
R
2(s1 + y)f ′(s0)f(s0) sin(2u0)u0

ydy =

∫
R
2(s1 + y)f ′(s0)f(s0) sin(2u0)u0

ydy

=
f ′(s0)

f(s0)

∫
R
(s1 + y)

d

dy
(u0

y)
2dy

=
f ′(s0)

f(s0)

(
(s1 + y)(u0

y)
2|∞−∞ −

∫
R
(u0

y)
2dy

)
.

We obtained this by assuming the overall boundary terms are again zero because the derivatives go
to zero due to our assumption (and say, some assumption that (u0

y)
2 goes to zero faster than y blows

up). Then considering this term and the contribution from the last term of (5), we are left with∫
R
s0t (u

0
y)

2dy = −f ′(s0)

f(s0)

∫
R
(u0

y)
2dy.

Since s0 is not a function of y, we can factor out and divide both sides by the integral to obtain that

s′0(t) = −f ′(s0)

f(s0)

as claimed.
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Problem 2

Consider Burger’s equation
uϵ
t + uϵuϵ

x + ϵuϵ
xx = 0 (7)

where uϵ = uϵ(t, x) with x ∈ R. From PDE theory, it turns out that u0 forms a ’shock’ along a curve
x = s(t), that is u0 has a jump discontinuity. The goal is to find a differential equation for s.

(a) Outer solution, far from s(t)

Apply the ansatz uϵ = u0 + ϵu1 + ... and show that u0 satisfies

u0
t + u0u0

x = 0

Solution. Plugging in the ansatz, we obtain

ut
0 + ϵu1

t + ...+ (u0 + ϵu1 + ...)(u0
x + ϵu1

x + ...) + ϵ(u0
xx + ϵu1

xx + ...) = 0.

Comparing the O(1) terms, we obtain
ut
0 + u0u0

x = 0

as claimed.

(b) Inner solution, on s(t)

Assume that u0 is discontinuous along the curve x = s(t). Let y = x−s(t)
ϵ and uϵ(t, x) = uϵ(t, y).

Rewrite (7) in terms of uϵ and apply the ansatz

uϵ = u0 + ϵu1 + ...

Compare the O( 1ϵ ) terms, and find a PDE for u0 (no need to ansatz s).

Solution. First rewriting in terms of uϵ and applying the chain rule, we obtain

uϵ
t −

1

ϵ
u0
ys

′(t) +
1

ϵ
uϵuϵ

y +
1

ϵ
uϵ
yy = 0.

Now substituting in the ansatz, we obtain

u0
t −

1

ϵ
u0
ys

′(t) + ϵu1
t − u1

ys
′(t) +

1

ϵ
(u0 + ϵu1 + ...)(u0

y + ϵu1
y + ...) +

1

ϵ
(u0

yy + ϵu1
yy + ...) = 0.

Comparing the O( 1ϵ ) terms, we obtain

−u0
ys

′(t) + u0u0
y + u0

yy = 0.

(c) Matching

Integrate the equation in (b) with respect to y from−∞ to∞. You may assume that limy→±∞ u0
y(y) =

0. The matching assumption here becomes:{
limy→∞ u0(y) = limx→(s(t))+ u0 .

= u+
0

limy→−∞ u0(y) = limx→(s(t))− u0 .
= u−

0

Use the matching assumption to find that s solves

s′(t) =
u−
0 + u+

0

2
.

Solution. Integrating the differential equation we found and using the assumption on the boundary
terms, we have that

−u0s′(t)|∞−∞ +
1

2
(u0)2|∞−∞ + 0 = 0.
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This is because the term u0u0
y = d

dy
1
2 (u

0)2, and for the last term, we had
∫
R u0

yy = u0
y|∞−∞ which we

assumed is zero. Due to the matching conditions, 1
2 (u

0)2|∞−∞ =
(u+

0 )2−(u−
0 )2

2 and −u(0)s′(t)|∞−∞ =

−s′(t)(u+
0 − u−

0 ). We then have that

s′(t) =
(u+

0 )
2 − (u−

0 )
2

2(u+
0 − u−

0 )
=

(u+
0 − u−

0 )(u
+
0 + u−

0 )

2(u+
0 − u−

0 )
=

u+
0 + u−

0

2

as claimed.
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