APMA 1941G Homework 11 Solutions

Lulabel Ruiz Seitz

April 24, 2024

With collaboration from Will Kwon.

Problem 1

Consider the following PDE:

$$
\begin{equation*}
\epsilon^{2} u_{t}^{\epsilon}-\epsilon^{2} u_{x x}^{\epsilon}+(f(x))^{2} \sin \left(2 u^{\epsilon}\right)=0 \tag{1}
\end{equation*}
$$

where $u^{\epsilon}=u^{\epsilon}(t, x), x \in \mathbb{R}$, and $f(x)>0$. Here think of $\sin \left(2 u^{\epsilon}\right)$ as being our $\Psi^{\prime}\left(u^{\epsilon}\right)$. Similar to the situation in "A Singular Variational Problem" (Ex 5), we expect that there are two regions $W^{ \pm}$ separated by a curve $x=s^{\epsilon}(t)$ such that

$$
u^{\epsilon}(t, x) \rightarrow\left\{\begin{array}{l}
0 \text { if } x<s^{\epsilon}(t) \tag{2}\\
\pi \text { if } x>s^{\epsilon}(t)
\end{array}\right.
$$

Our goal is to find a differential equation for $s^{0}(t)$.
(a)

Let $u^{\epsilon}(t, x)=\bar{u}^{\epsilon}\left(t, \frac{x-s^{\epsilon}(t)}{\epsilon}\right)$ where $\bar{u}^{\epsilon}=\bar{u}^{\epsilon}(t, y)$. Rewrite 1 in terms of \bar{u}^{ϵ}.
Solution. Applying the chain rule, we obtain the equivalent equation for (1),

$$
\begin{equation*}
\epsilon^{2} \bar{u}_{t}^{\epsilon}-\epsilon \bar{u}_{y}^{\epsilon} s_{t}^{\epsilon}-\bar{u}_{y y}^{\epsilon}+\left(f\left(\epsilon y+s^{\epsilon}(t)\right)\right)^{2} \sin \left(2 \bar{u}^{\epsilon}\right)=0 . \tag{3}
\end{equation*}
$$

(b)

Apply the following ansatz to the PDE in (a):

$$
\begin{cases}\bar{u}^{\epsilon} & =\bar{u}^{0}+\epsilon \bar{u}^{1}+\ldots \\ s^{\epsilon} & =s^{0}+\epsilon s^{1}+\ldots\end{cases}
$$

Here $\bar{u}^{k}=\bar{u}^{k}(t, y)$ and $s^{k}=s^{k}(t)$. What are the $O(1)$ and $O(\epsilon)$ terms? Note that you may need to Taylor expand the $\sin \left(2 \bar{u}^{\epsilon}\right)$ and the $f(x)=f(s+\epsilon y)=f\left(s_{0}+\epsilon\left(s_{1}+y\right)\right)$ terms.

Solution. In order to substitute the above ansatz into (3), first note that via Taylor expansion,

$$
\sin \left(2 \bar{u}^{\epsilon}\right)=\sin \left(2\left(\bar{u}^{0}+\epsilon \bar{u}^{1}+\ldots\right)\right)=\sin \left(2 \bar{u}^{0}\right)+2 \epsilon \bar{u}^{1} \cos \left(2 \bar{u}^{0}\right)+\ldots
$$

and

$$
f\left(s^{\epsilon}+\epsilon y\right)=f\left(s^{0}+\epsilon\left(s^{1}+y\right)+\ldots\right)=f\left(s^{0}\right)+\epsilon\left(s^{1}+y\right) f^{\prime}\left(s_{0}\right)+\ldots
$$

Then we obtain

$$
\begin{aligned}
\epsilon^{2}\left(\bar{u}_{t}^{0}-\epsilon \bar{u}_{t}^{1}+\ldots\right) & +\epsilon\left(\bar{u}_{y}^{0}+\epsilon \bar{u}_{y}^{1}+\ldots\right)\left(s_{t}^{0}+\epsilon s_{t}^{1}+\ldots\right)-\left(\bar{u}_{y y}^{0}+\epsilon \bar{u}_{y y}^{1}+\ldots\right) \\
& +\left(f\left(s^{0}\right)+\epsilon\left(s^{1}+y\right) f^{\prime}\left(s_{0}\right)+\ldots\right)^{2}\left(\sin \left(2 \bar{u}^{0}\right)+2 \epsilon \bar{u}^{1} \cos \left(2 \bar{u}^{0}\right)+\ldots\right)=0
\end{aligned}
$$

The $O(1)$ terms then yield:

$$
\begin{equation*}
\bar{u}_{y y}^{0}-f\left(s^{0}\right)^{2} \sin \left(2 \bar{u}^{0}\right)=0 . \tag{4}
\end{equation*}
$$

The $O(\epsilon)$ terms yield:

$$
\begin{equation*}
-\bar{u}_{y y}^{1}+2 f\left(s^{0}\right)^{2} \bar{u}^{1} \cos \left(2 \bar{u}^{0}\right)+2\left(s^{1}+y\right) f^{\prime}\left(s^{0}\right) f\left(s^{0}\right) \sin \left(2 \bar{u}^{0}\right)-\bar{u}_{y}^{0} s_{t}^{0}=0 \tag{5}
\end{equation*}
$$

(c)

Show that s_{0} must satisfy the differential equation:

$$
\begin{equation*}
s_{0}^{\prime}(t)=-\frac{f^{\prime}\left(s_{0}\right)}{f\left(s_{0}\right)} \tag{6}
\end{equation*}
$$

here $s_{0}^{\prime}=\frac{d s^{0}}{d t}$ and $f^{\prime}=\frac{d f}{d s}$.
Solution. First, we multiply the $O(\epsilon)$ equation (5) by \bar{u}_{y}^{0} and integrate with respect to y on \mathbb{R}. Doing this, the first term in (5) becomes, using integration by parts,

$$
\begin{aligned}
-\int_{\mathbb{R}} \bar{u}_{y y}^{1} \bar{u}_{y}^{0} & =-\left.\bar{u}_{y}^{1} \bar{u}_{y}^{0}\right|_{-\infty} ^{\infty}+\int_{\mathbb{R}} \bar{u}_{y}^{1} \bar{u}_{y y}^{0} \\
& =\int_{\mathbb{R}} f\left(s^{0}\right)^{2} \sin \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{1} d y
\end{aligned}
$$

Here we saw the boundary terms were zero because \bar{u}^{ϵ} tends to a constant both when $y \rightarrow \infty$ and $y \rightarrow-\infty$, due to the condition (2). Next we consider the contribution from the second term in (5) after multiplying and integrating. Notice that $\cos \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{0}=\frac{d}{d y} \frac{1}{2} \sin \left(2 \bar{u}^{0}\right)$. Then using integration by parts yields that

$$
\begin{aligned}
\int_{\mathbb{R}} 2 f\left(s^{0}\right)^{2} \bar{u}^{1}\left(\cos 2 \bar{u}^{0}\right) \bar{u}_{y}^{0} d y & =\int_{\mathbb{R}} f\left(s_{0}\right)^{2} \bar{u}^{1} \frac{d}{d y} \sin \left(2 \bar{u}^{0}\right) d y \\
& =\left.f\left(s_{0}\right)^{2} \bar{u}^{1} \sin \left(2 \bar{u}^{0}\right)\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}} \sin \left(2 \bar{u}^{0}\right) f\left(s_{0}\right)^{2} \bar{u}_{y}^{1} d y \\
& =-\int_{\mathbb{R}} f\left(s^{0}\right)^{2} \sin \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{1} d y
\end{aligned}
$$

We have now seen that the contributions from the first two terms reduce to zero. Next we consider the third term. Since the $O(1)$-terms yield that $\sin \left(2 \bar{u}^{0}\right)=\frac{\bar{u}_{y y}^{0}}{f\left(s^{0}\right)^{2}}$, we substitute this in to see that, again using integration by parts,

$$
\begin{aligned}
\int_{\mathbb{R}} 2\left(s^{1}+y\right) f^{\prime}\left(s^{0}\right) f\left(s^{0}\right) \sin \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{0} d y & =\int_{\mathbb{R}} 2\left(s^{1}+y\right) f^{\prime}\left(s^{0}\right) f\left(s^{0}\right) \sin \left(2 \bar{u}^{0}\right) \bar{u}_{y}^{0} d y \\
& =\frac{f^{\prime}\left(s^{0}\right)}{f\left(s^{0}\right)} \int_{\mathbb{R}}\left(s^{1}+y\right) \frac{d}{d y}\left(\bar{u}_{y}^{0}\right)^{2} d y \\
& =\frac{f^{\prime}\left(s^{0}\right)}{f\left(s^{0}\right)}\left(\left.\left(s^{1}+y\right)\left(\bar{u}_{y}^{0}\right)^{2}\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}}\left(\bar{u}_{y}^{0}\right)^{2} d y\right) .
\end{aligned}
$$

We obtained this by assuming the overall boundary terms are again zero because the derivatives go to zero due to our assumption (and say, some assumption that $\left(\bar{u}_{y}^{0}\right)^{2}$ goes to zero faster than y blows up). Then considering this term and the contribution from the last term of (5), we are left with

$$
\int_{\mathbb{R}} s_{t}^{0}\left(\bar{u}_{y}^{0}\right)^{2} d y=-\frac{f^{\prime}\left(s^{0}\right)}{f\left(s^{0}\right)} \int_{\mathbb{R}}\left(\bar{u}_{y}^{0}\right)^{2} d y
$$

Since s^{0} is not a function of y, we can factor out and divide both sides by the integral to obtain that

$$
s_{0}^{\prime}(t)=-\frac{f^{\prime}\left(s_{0}\right)}{f\left(s_{0}\right)}
$$

as claimed.

Problem 2

Consider Burger's equation

$$
\begin{equation*}
u_{t}^{\epsilon}+u^{\epsilon} u_{x}^{\epsilon}+\epsilon u_{x x}^{\epsilon}=0 \tag{7}
\end{equation*}
$$

where $u^{\epsilon}=u^{\epsilon}(t, x)$ with $x \in \mathbb{R}$. From PDE theory, it turns out that u^{0} forms a 'shock' along a curve $x=s(t)$, that is u^{0} has a jump discontinuity. The goal is to find a differential equation for s.

(a) Outer solution, far from $s(t)$

Apply the ansatz $u^{\epsilon}=u^{0}+\epsilon u^{1}+\ldots$ and show that u^{0} satisfies

$$
u_{t}^{0}+u^{0} u_{x}^{0}=0
$$

Solution. Plugging in the ansatz, we obtain

$$
u_{0}^{t}+\epsilon u_{t}^{1}+\ldots+\left(u^{0}+\epsilon u^{1}+\ldots\right)\left(u_{x}^{0}+\epsilon u_{x}^{1}+\ldots\right)+\epsilon\left(u_{x x}^{0}+\epsilon u_{x x}^{1}+\ldots\right)=0
$$

Comparing the $O(1)$ terms, we obtain

$$
u_{0}^{t}+u^{0} u_{x}^{0}=0
$$

as claimed.

(b) Inner solution, on $s(t)$

Assume that u^{0} is discontinuous along the curve $x=s(t)$. Let $y=\frac{x-s(t)}{\epsilon}$ and $u^{\epsilon}(t, x)=\bar{u}^{\epsilon}(t, y)$. Rewrite (7) in terms of \bar{u}_{ϵ} and apply the ansatz

$$
\bar{u}^{\epsilon}=\bar{u}^{0}+\epsilon \bar{u}^{1}+\ldots
$$

Compare the $O\left(\frac{1}{\epsilon}\right)$ terms, and find a PDE for \bar{u}^{0} (no need to ansatz s).
Solution. First rewriting in terms of \bar{u}_{ϵ} and applying the chain rule, we obtain

$$
\bar{u}_{t}^{\epsilon}-\frac{1}{\epsilon} \bar{u}_{y}^{0} s^{\prime}(t)+\frac{1}{\epsilon} \bar{u}^{\epsilon} \bar{u}_{y}^{\epsilon}+\frac{1}{\epsilon} \bar{u}_{y y}^{\epsilon}=0 .
$$

Now substituting in the ansatz, we obtain

$$
\bar{u}_{t}^{0}-\frac{1}{\epsilon} \bar{u}_{y}^{0} s^{\prime}(t)+\epsilon \bar{u}_{t}^{1}-\bar{u}_{y}^{1} s^{\prime}(t)+\frac{1}{\epsilon}\left(\bar{u}^{0}+\epsilon \bar{u}^{1}+\ldots\right)\left(\bar{u}_{y}^{0}+\epsilon \bar{u}_{y}^{1}+\ldots\right)+\frac{1}{\epsilon}\left(\bar{u}_{y y}^{0}+\epsilon \bar{u}_{y y}^{1}+\ldots\right)=0 .
$$

Comparing the $O\left(\frac{1}{\epsilon}\right)$ terms, we obtain

$$
-\bar{u}_{y}^{0} s^{\prime}(t)+\bar{u}^{0} \bar{u}_{y}^{0}+\bar{u}_{y y}^{0}=0
$$

(c) Matching

Integrate the equation in (b) with respect to y from $-\infty$ to ∞. You may assume that $\lim _{y \rightarrow \pm \infty} \bar{u}_{y}^{0}(y)=$ 0 . The matching assumption here becomes:

$$
\left\{\begin{array}{l}
\lim _{y \rightarrow \infty} \bar{u}^{0}(y)=\lim _{x \rightarrow(s(t))^{+}} u^{0} \doteq u_{0}^{+} \\
\lim _{y \rightarrow-\infty} \bar{u}^{0}(y)=\lim _{x \rightarrow(s(t))^{-}} u^{0} \doteq u_{0}^{-}
\end{array}\right.
$$

Use the matching assumption to find that s solves

$$
s^{\prime}(t)=\frac{u_{0}^{-}+u_{0}^{+}}{2}
$$

Solution. Integrating the differential equation we found and using the assumption on the boundary terms, we have that

$$
-\left.\bar{u}^{0} s^{\prime}(t)\right|_{-\infty} ^{\infty}+\left.\frac{1}{2}\left(\bar{u}^{0}\right)^{2}\right|_{-\infty} ^{\infty}+0=0
$$

This is because the term $\bar{u}^{0} \bar{u}_{y}^{0}=\frac{d}{d y} \frac{1}{2}\left(\bar{u}^{0}\right)^{2}$, and for the last term, we had $\int_{\mathbb{R}} \bar{u}_{y y}^{0}=\left.\bar{u}_{y}^{0}\right|_{-\infty} ^{\infty}$ which we assumed is zero. Due to the matching conditions, $\left.\frac{1}{2}\left(\bar{u}^{0}\right)^{2}\right|_{-\infty} ^{\infty}=\frac{\left(u_{0}^{+}\right)^{2}-\left(u_{0}^{-}\right)^{2}}{2}$ and $-\left.\bar{u}(0) s^{\prime}(t)\right|_{-\infty} ^{\infty}=$ $-s^{\prime}(t)\left(u_{0}^{+}-u_{0}^{-}\right)$. We then have that

$$
s^{\prime}(t)=\frac{\left(u_{0}^{+}\right)^{2}-\left(u_{0}^{-}\right)^{2}}{2\left(u_{0}^{+}-u_{0}^{-}\right)}=\frac{\left(u_{0}^{+}-u_{0}^{-}\right)\left(u_{0}^{+}+u_{0}^{-}\right)}{2\left(u_{0}^{+}-u_{0}^{-}\right)}=\frac{u_{0}^{+}+u_{0}^{-}}{2}
$$

as claimed.

